Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
$f(\sqrt{11})=a(\sqrt{11})^2=11a=-11\Rightarrow a=-1$
Vậy hàm số có dạng $y=-x^2$
Đáp án a.
Bài 2:
$f(-47)-f(-31)=365(-47)^2-365.(-31)^2=365.47^2-365.31^2$
$=365(47^2-31^2)>0$ do $47^2>31^2$
$\Rightarrow f(-47)> f(-31)$
Các phương án còn lại thực hiện tương tự ta thấy sai.
Do đó đáp án a là đáp án duy nhất đúng
Câu 1:
a)
\(y=f\left(x\right)=2x^2\) | -5 | -3 | 0 | 3 | 5 |
f(x) | 50 | 18 | 0 | 18 | 50 |
b) Ta có: f(x)=8
\(\Leftrightarrow2x^2=8\)
\(\Leftrightarrow x^2=4\)
hay \(x\in\left\{2;-2\right\}\)
Vậy: Để f(x)=8 thì \(x\in\left\{2;-2\right\}\)
Ta có: \(f\left(x\right)=6-4\sqrt{2}\)
\(\Leftrightarrow2x^2=6-4\sqrt{2}\)
\(\Leftrightarrow x^2=3-2\sqrt{2}\)
\(\Leftrightarrow x=\sqrt{3-2\sqrt{2}}\)
hay \(x=\sqrt{2}-1\)
Vậy: Để \(f\left(x\right)=6-4\sqrt{2}\) thì \(x=\sqrt{2}-1\)