K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 5 2016

Ta có: f(1) = 1 + 1^3 + 1^5 + 1^7 +...+ 1^101

               =  1 + 50.1

               = 1 + 50           

               = 51

Vậy f(1) = 51

Có:  f(-1) = 1 + (-1)^3 + (-1)^5 + (-1)^7 + ... + (-1)^101

              = 1 + 50.(-1)

              = 1 - 50 

              = -49

Vậy f(-1) = -49

Chúc bạn học tốt nha

1 tháng 5 2016

ta có:f(x)=1+x3+x5+...+x101

=>f(1)=1+13+15+...+1101

=1+1+...+1(f(x) có 51 số hạng )

=1*51

=1

f(-1) làm tương tự và có kết quả là=-49

1 tháng 5 2016

Ta có: f(x)=1+x3+x5+...+x101

      => f(1)= 1+13+15+...+1101

 = 1+  1 + 1 +...+1 (f(x) có 51 số hạng)

  = 51   f( 1) = 1 + 13 + 15 + ... + 1101 = 1 + 1+ 1+ ... + 1 ( có 51 số hạng 1) = 51

          f( -1) = - 49

15 tháng 12 2017

Cho x=7 ta có:\(y=f\left(7\right)=2f\left(7\right)-f\left(\frac{1}{7}\right)=2.7^2-1=97\)

Vậy \(f\left(7\right)=97\)

Hình như đề sai thì phải bạn ak

15 tháng 12 2017

cho mk hỏi phân thức \(\frac{x^2-2017}{1+x^{2018}}\) được xác định khi

1 tháng 11 2018

\(y=f\left(x\right)=\left(2a+3\right)x-5\)

\(f\left(1\right)=\left(2a+3\right).1-5\)

\(\Rightarrow6=2a-2\Rightarrow a=4\)

Vậy a = 4

1 tháng 5 2016

1.       a^2+a+1=                a^2+1/2 a+1/2 a  +1     =a(a+1/2)+1/2(a+1/2)+1/2         =(a+1/2)^2  +1/2                           

ma (a+1/2)^2  lon hon hoac bang 0        suy  ra (a+1/2)^2+1/2  lon hon hoac bang1/2 suy ra da thuc nay khac 0

vay da thuc tren ko co nghiem

23 tháng 7 2021

a) \(f\left(x\right)-g\left(x\right)=\left[x\left(x^2-2x+7\right)-1\right]-\left[x\left(x^2-2x-1\right)-1\right]\)

\(f\left(x\right)-g\left(x\right)=x^3-2x^2+7x-1-x^3+2x^2+x+1\)

\(f\left(x\right)-g\left(x\right)=8x\)

 \(f\left(x\right)+g\left(x\right)=x\left(x^2-2x+7\right)-1+x\left(x^2-2x-1\right)-1\)

 \(f\left(x\right)+g\left(x\right)=x^3-2x^2+7x-1+x^3-2x^2-x-1\)

 \(f\left(x\right)+g\left(x\right)=2x^3-4x^2+6x-2\)

b) 8x=0

=> x=0

=> Nghiệm đa thức f(x)-g(x)

c) Thay \(x=-\frac{3}{2}\)vào BT f(x)+g(x) ta được :

   \(2.\left(-\frac{3}{2}\right)^3-4\left(-\frac{3}{2}\right)^2+6\left(-\frac{3}{2}\right)-2\)

\(=6,75+9-9-2\)

\(=4,75\)

#H

31 tháng 1 2022

a) Ta có: \(y=f\left(x\right)=4x^2-5\)

\(\Rightarrow\left\{{}\begin{matrix}f\left(3\right)=4.3^2-5=31\\f\left(-\dfrac{1}{2}\right)=4.\left(-\dfrac{1}{2}\right)^2-5=-4\end{matrix}\right.\)

b) Ta có: \(f\left(x\right)=-1\)

\(\Rightarrow4x^2-5=-1\)

\(\Leftrightarrow4x^2=4\)

\(\Leftrightarrow x^2=1\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)

Vậy \(x\in\left\{1;-1\right\}\) thì \(f\left(x\right)=-1\)

c) \(\forall x\in R,f\left(x\right)=f\left(-x\right)\Leftrightarrow f\left(-x\right)=4.\left(-x\right)^2-5=4x^2-5=f\left(x\right)\)

Vậy \(\forall x\in R\) thì \(f\left(x\right)=f\left(-x\right)\)

31 tháng 1 2022

\(a.f\left(3\right)=4.3^2-5=31.\\ f\left(\dfrac{-1}{2}\right)=4.\left(\dfrac{-1}{2}\right)^2-5=-4.\)

\(b.f\left(x\right)=-1.\Rightarrow4x^2-5=-1.\\ \Leftrightarrow4x^2=4.\Leftrightarrow x^2=1.\\ \Leftrightarrow x=\pm1.\)

\(c.f\left(x\right)=f\left(-x\right).\\ \Rightarrow4x^2-5=4\left(-x\right)^2-5.\\ \Leftrightarrow4x^2-5=4x^2-5.\)

\(\Leftrightarrow0x=0\) (luôn đúng).

Vậy với mọi x ∈ R thì f (x)= f (-x).

27 tháng 3 2020

Ta có f(x)=1-5x

=> f(1)=1-5.1=1-5=-4

f(2)=1-5.2=1-10=-9

f(\(\frac{1}{5}\))=1-\(5\cdot\frac{1}{5}=1-1=0\)

\(f\left(\frac{-3}{5}\right)=1-5\cdot\left(\frac{-3}{5}\right)=1+3=4\)

31 tháng 12 2020

Bài 1: 

Thay x=1 vào hàm số \(y=f\left(x\right)=2x^2-5\), ta được:

\(f\left(1\right)=2\cdot1^2-5=2-5=-3\)

Thay x=-2 vào hàm số \(y=f\left(x\right)=2x^2-5\), ta được:

\(f\left(-2\right)=2\cdot\left(-2\right)^2-5=2\cdot4-5=3\)

Thay x=0 vào hàm số \(y=f\left(x\right)=2x^2-5\), ta được: 

\(f\left(0\right)=2\cdot0^2-5=-5\)

Thay x=2 vào hàm số \(y=f\left(x\right)=2x^2-5\), ta được:

\(f\left(2\right)=2\cdot2^2-5=8-5=3\)

Thay \(x=\dfrac{1}{2}\) vào hàm số \(y=f\left(x\right)=2x^2-5\), ta được:

\(f\left(\dfrac{1}{2}\right)=2\cdot\left(\dfrac{1}{2}\right)^2-5=2\cdot\dfrac{1}{4}-5=-\dfrac{9}{2}\)

Vậy: f(1)=-3; f(-2)=3; f(0)=-5; f(2)=3; \(f\left(\dfrac{1}{2}\right)=-\dfrac{9}{2}\)

AH
Akai Haruma
Giáo viên
31 tháng 12 2020

Bài 1:

\(f(x)=2x^2-5\) thì:

$f(1)=2.1^2-5=-3$

$f(-2)=2(-2)^2-5=3$

$f(0)=2.0^2-5=-5$

$f(2)=2.2^2-5=3$

$f(\frac{1}{2})=2(\frac{1}{2})^2-5=\frac{-9}{2}$