K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(\left\{{}\begin{matrix}x_1+x_2=8\\x_1x_2=6\end{matrix}\right.\)

\(D=x_1^4-x_2^4=\left(x_1+x_2\right)\left(x_1-x_2\right)\left(x_1^2+x_2^2\right)\)

\(=8\cdot\left[\left(x_1+x_2\right)^2-2x_1x_2\right]\cdot\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}\)

\(=8\cdot\left[8^2-2\cdot6\right]\cdot\sqrt{8^2-4\cdot6}\)

\(=8\cdot52\cdot2\sqrt{10}=832\sqrt{10}\)

b: \(E=\left(x_1^2+x_2^2\right)^2-2x_1^2\cdot x_2^2\)

\(=52^2-2\cdot\left(x_1\cdot x_2\right)^2=52^2-2\cdot6^2=2632\)

c: \(F=\dfrac{3x_2^2+3x_1^2}{\left(x_1\cdot x_2\right)^2}=\dfrac{3\cdot52}{6^2}=\dfrac{13}{3}\)

x1+x2=3; x1x2=-7

\(B=\left|x_1-x_2\right|=\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}\)

\(=\sqrt{3^2-4\cdot\left(-7\right)}=\sqrt{37}\)

\(F=\left(x_1^2+x_2^2\right)^2-2\left(x_1\cdot x_2\right)^2\)

\(=\left[3^2-2\cdot\left(-7\right)\right]^2-2\cdot\left(-7\right)^2\)

\(=23^2-2\cdot49=431\)

24 tháng 2 2023

\(x^2-3x+2=0\)

\(\Leftrightarrow x^2-x-2x+2=0\)

\(\Leftrightarrow x\left(x-1\right)-2\left(x-1\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\x-1=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1=2\\x_2=1\end{matrix}\right.\)

\(C=x_1-x_2=2-1=1\)

Vậy \(C=1\)

Đề bài yêu cầu gì vậy bạn?

28 tháng 3 2021

rồi đó bạn.