Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(f\left(0\right)=c⋮3\) ;
\(f\left(1\right)=a+b+c⋮3\) mà \(c⋮3\Rightarrow a+b⋮3\)
\(f\left(-1\right)=a-b+c=-2b+\left(a+b+c\right)⋮3\) mà \(a+b+c⋮3\Rightarrow-2b⋮3\Rightarrow b⋮3\) (do 2 và 3 nguyên tố cùng nhau)
\(\left\{{}\begin{matrix}a+b+c⋮3\\b⋮3\\c⋮3\end{matrix}\right.\) \(\Rightarrow a⋮3\)
f(x)=ax^2+bx+c
=> f(1)= a + b + c
Mà f(1)= 3 nên a + b + c = 3 /1/
f(3) = 9a + 3b + c
Mà f(3)=5 => 9a + 3b + c = 5 /2/
f(5)= 25a + 5b + c
Mà f(5)=7 nên 25a + 5b + c = 7 /3/
Lấy /2/ - /1/, ta được:
8a + 2b = 2
<=> 2(4a + b) = 2
<=> 4a + b = 1 /4/
Lấy /3/ - /1/, ta được:
24a + 4 b = 4
<=> 4(6a + b) = 4
<=> 6a + b = 1 /5/
Lấy /5/ - /4/, ta được:
2a = 0
<=> a = 0
Thay a = 0 vào /4/, ta được:
4.0 + b = 1
<=> b = 1
Thay a = 0, b = 1 vào /1/, ta được:
0 + 1 + c = 3
<=> c = 2
=> a = 0, b = 1, c = 2
Vậy f(x) = 0.x^2 + x.1 + 2 = x + 2
Bạn ơi bạn thử kiểm tra kỹ xem cái đề bài hộ mình cái bởi vì mình thay x = 1 x = -1 vào đa thức nhưng không bằng nhau.
Sửa là ax2-bx+c
Mk đoán thôi
Cho f(x)= ax^2 + bx +c thỏa mãn 2a+6b+19c=0
CMR: phương trình ax^2 + bx +c = 0 có nhiệm trong đoạn [0;1/3]
--------
ta có:
f(0) = c
f(1/3) = a/9 + b/3 + c
=> f(0) + 18.f(1/3) = c + 2a + 6b + 18c = 2a + 6b + 19c = 0 (*)
Nếu f(0) = 0 hoặc f(1/3) = 0 => f(x) = 0 có nghiệm là 0 hoặc 1/3 thuộc [0,1/3]
nếu f(0) ≠ 0 và f(1/3) ≠ 0 tự (*) => f(0).f(1/3) ≤ 0 => f(x) = 0 có nghiệm thuộc [0,1/3]
Cho f(x)= ax^2 + bx +c thỏa mãn 2a+3b+6c=0
Tính a,b,c theo f(0), f(1), f(1/2)
f(0) = c
f(1) = a + b + c
f(1/2) = a/4 + b/2 + c
CMR ba số f(0), f(1), f(1/2) không thể cùng dấu:
f(0) + f(1) + 4f(1/2) = c + a+b+c + a + 2b + 4c = 2a + 3b + 6c = 0
=> f(0) , f(1) , f(1/2) không thể cùng dấu.
CMR phương trình ax^2 + bx +c = 0 có nhiệm trong khoảng (0;1):
dựa vào câu b) nếu f(0) < 0 => f(1) > 0 hoặc f(1/2) > 0
=> f(0).f(1) < 0 hoặc f(0).f(1/2) < 0 => f(x) = 0 có nghiệm thuộc (0,1)
f(0) > 0 xét tương tự
tích nha
dang tuan anh lại copy