K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(f\left(x\right)=5x^4-x^2\left(x-3\right)+3x\left(x-2\right)-6x+2\)

\(=5x^4-x^3+3x^2+3x^2-6x-6x+2\)

\(=5x^4-x^3+6x^2-12x+2\)

\(g\left(x\right)=2x^2\cdot x^2-4x^2+2\left(x+1\right)+5=2x^4-4x^2+2x+7\)

\(f\left(x\right)+g\left(x\right)=7x^4-x^3+2x^2-10x+9\)

\(f\left(x\right)-g\left(x\right)=3x^4-x^3+10x^2-14x-5\)

20 tháng 6 2023

\(f\left(x\right)=-3x^2+x-1+x^4-x^3-x^2+3x^4+2x^3\)

\(f\left(x\right)=\left(x^4+3x^4\right)-\left(x^3-2x^3\right)-\left(3x^2+x^2\right)+x-1\)

\(f\left(x\right)=4x^4+x^3-4x^2+x-1\)

\(g\left(x\right)=x^4+x^2-x^3+x-5+5x^3-x^2-3x^4\)

\(g\left(x\right)=\left(x^4-3x^4\right)+\left(5x^3-x^3\right)+\left(x^2-x^2\right)+x-5\)

\(g\left(x\right)=-2x^4+4x^3+x-5\)

`@` `\text {Ans}`

`\downarrow`

`a,`

\(f(x) -3x^2 + x - 1 + x^4 - x^3 - x^2 + 3x^4 + 2x^3\)

`= (x^4 +3x^4) + (-x^3 +2x^3) + (-3x^2 - x^2) + x - 1`

`= 4x^4 + x^3 -4x^2 + x -1`

\(g(x) = x^4 + x^2 - x^3 + x - 5 + 5x^3 - x^2 - 3x^4\)

`= (x^4-3x^4) + (-x^3+5x^3) + (x^2 - x^2) + x -5`

`= -2x^4 + 4x^3 +x - 5`

1: 

a: f(3)=2*3^2-3*3=18-9=9

b: f(x)=0

=>2x^2-3x=0

=>x=0 hoặc x=3/2

c: f(x)+g(x)

=2x^2-3x+4x^3-7x+6

=6x^3-10x+6

7 tháng 1 2018

a) \(2^3:\left|x-2\right|=2\)

\(\Leftrightarrow8:\left|x-2\right|=2\)

\(\Leftrightarrow\left|x-2\right|=8:2\)

\(\Leftrightarrow\left|x-2\right|=4\)

Xét trường hợp 1: \(x-2=4\)

\(\Rightarrow x=4+2\)

\(\Rightarrow x=6\)

Xét trường hợp 2: \(x-2=-4\)

\(\Rightarrow x=-4+2\)

\(\Rightarrow x=-\left(4-2\right)\)

\(\Rightarrow x=-2\)

Vậy \(x=6\) hoặc \(x=-2\)

b)

7 tháng 1 2018

cảm ơn nha

b) (5/2-3x)=25/9

            3x = 5/2-25/9

            3x =-5/18

              x =-5/18:3

              x=-5/54

\(e.\left(x-1\right)^5=-32\)

  \(\left(x-1\right)^5=\left(-2\right)^5\)

   \(x-1=-2\)

   \(x\)      \(=-2+1\)

   \(x\)        \(=-1\)

Vậy \(x=-1\)

12 tháng 7 2018

\(4)D=x^2+x+1\)

\(D=x^2+2x.\frac{1}{2}+\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^2+1\)

\(D=\left(x+\frac{1}{2}\right)^2-\frac{1}{4}+1\)

\(D=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)

Vậy biểu thức trên luôn nhận giá trị dương với mọi giá trị của x.

Các câu khác lm tương tự nhé.

Cho góp ý xíu: lần sau bn đưa từng câu một lên diễn đàn thì sẽ có câu trả lời nhanh hơn là đưa cùng một lúc như thế này đấy

hok tốt~

3 tháng 8 2020

\(D=x^2+x+1=x^2+x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)

\(\left(x+\frac{1}{2}\right)^2\ge0\forall x\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)( đpcm )

\(F=2x^2+4x+3=2\left(x^2+2x+1\right)+1=2\left(x+1\right)^2+1\)

\(2\left(x+1\right)^2\ge0\forall x\Rightarrow2\left(x+1\right)^2+1\ge1>0\forall x\)( đpcm )

\(G=3x^2-5x+3=3\left(x^2-\frac{5}{3}x+\frac{25}{36}\right)+\frac{11}{12}=3\left(x-\frac{5}{6}\right)^2+\frac{11}{12}\)

\(3\left(x-\frac{5}{6}\right)^2\ge0\forall x\Rightarrow3\left(x-\frac{5}{6}\right)^2+\frac{11}{12}\ge\frac{11}{12}>0\forall x\)( đpcm )

\(H=4x^2+4x+2=4\left(x^2+x+\frac{1}{4}\right)+1=4\left(x+\frac{1}{2}\right)^2+1\)

\(4\left(x+\frac{1}{2}\right)^2\ge0\forall x\Rightarrow4\left(x+\frac{1}{2}\right)^2+1\ge1>0\forall x\)( đpcm )

\(K=4x^2+3x+2=4\left(x^2+\frac{3}{4}x+\frac{9}{64}\right)+\frac{23}{16}=4\left(x+\frac{3}{8}\right)^2+\frac{23}{16}\)

\(4\left(x+\frac{3}{8}\right)^2\ge0\forall x\Rightarrow4\left(x+\frac{3}{8}\right)^2+\frac{23}{16}\ge\frac{23}{16}>0\forall x\)( đpcm )

\(L=2x^2+3x+4=2\left(x^2+\frac{3}{2}x+\frac{9}{16}\right)+\frac{23}{8}=2\left(x+\frac{3}{4}\right)^2+\frac{23}{8}\)

\(2\left(x+\frac{3}{4}\right)^2\ge0\forall x\Rightarrow2\left(x+\frac{3}{4}\right)^2+\frac{23}{8}\ge\frac{23}{8}>0\forall x\)( đpcm )

1: \(D=x^2+x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)

6: \(F=2\left(x^2+2x+\dfrac{3}{2}\right)=2\left(x^2+2x+1+\dfrac{1}{2}\right)\)

\(=2\left(x+1\right)^2+1>0\)

7: \(=3\left(x^2-\dfrac{5}{3}x+1\right)\)

\(=3\left(x^2-2\cdot x\cdot\dfrac{5}{6}+\dfrac{25}{36}+\dfrac{11}{36}\right)\)

\(=3\left(x-\dfrac{5}{6}\right)^2+\dfrac{11}{12}>0\)

8: \(=4x^2+4x+1+1=\left(2x+1\right)^2+1>0\)

10 tháng 3 2017

Thêm nữa câu a) Tính: M(x) + N(x)+ P(x)

B) Tính M(x) - N (x) - P(x)

ok rồi giúp mình với nha