K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2017

Theo tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=\frac{a+b+c+d}{b+c+d+a}=1\)

=> a/b = 1 => a = b

b/c = 1 => b = c

c/d = 1 => c = d

d/a = 1 => d = a

=> a = b = c = d

=> \(Q=-1+\left(-1\right)+\left(-1\right)+\left(-1\right)=-4\)

15 tháng 10 2017

dung roi do  bn\(GOOD\)

31 tháng 12 2016

Áp dụng tính chất dãy tỉ số bằng nhau, ta có :

     \(\frac{a}{3b}=\frac{b}{3c}=\frac{c}{3d}=\frac{d}{3a}=\frac{a+b+c+d}{3b+3c+3d+3a}=\frac{a+b+c+d}{3\cdot\left(b+c+d+a\right)}=\frac{1}{3}\)

Do đó :

       \(\frac{a}{3b}=\frac{1}{3}\Rightarrow\frac{a}{b}.\frac{1}{3}=\frac{1}{3}\Rightarrow\frac{a}{b}=\frac{1}{3}:\frac{1}{3}=1\Rightarrow a=b\)

       \(\frac{b}{3c}=\frac{1}{3}\Rightarrow\frac{b}{c}\cdot\frac{1}{3}=\frac{1}{3}\Rightarrow\frac{b}{c}=\frac{1}{3}:\frac{1}{3}=1\Rightarrow b=c\)

       \(\frac{c}{3d}=\frac{1}{3}\Rightarrow\frac{c}{d}\cdot\frac{1}{3}=\frac{1}{3}\Rightarrow\frac{c}{d}=\frac{1}{3}:\frac{1}{3}=1\Rightarrow c=d\)

       \(\frac{d}{3a}=\frac{1}{3}\Rightarrow\frac{d}{a}\cdot\frac{1}{3}=\frac{1}{3}\Rightarrow\frac{d}{a}=\frac{1}{3}:\frac{1}{3}=1\Rightarrow d=a\)

\(\Rightarrow a=b=c=d\)

21 tháng 1 2018

Áp dụng TCDTSBN ta có:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=\frac{a+b+c+d}{b+c+d+a}=1\) (vì a+b+c+d khác 0)

=>a=b=c=d

=>M=\(\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=\frac{1}{2}\cdot4=2\)

23 tháng 1 2018

Ta có:a/b=b/c=c/d=d/a

Áp dụng tính chất dãy tỉ số bằng nhau, ta được:a/b=b/c=c/d=(a+b+c+d)/(b+c+d+a)=1

=>a=b=c=d(vì a/b=b/c=c/d=d/a=1)

Thay vào M sau đó tìm được M=2

25 tháng 3 2019

Ta có:\(\frac{3a+b+c+d}{a}=\frac{a+3b+c+d}{b}=\frac{a+b+3c+d}{c}=\frac{a+b+c+3d}{d}\)

\(\Rightarrow\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)

\(\Rightarrow\orbr{\begin{cases}a+b+c+d=0\\a=b=c=d\end{cases}}\)

\(TH1:a+b+c+d=0\Rightarrow\hept{\begin{cases}a+b=-\left(c+d\right)\\b+c=-\left(a+d\right)\end{cases}}\)

\(\Rightarrow Q=\left(\frac{-\left(c+d\right)}{c+d}\right)^2+\left(\frac{-\left(a+d\right)}{a+d}\right)^2+\left(\frac{c+d}{-\left(c+d\right)}\right)^2+\left(\frac{a+d}{-\left(a+d\right)}\right)^2\)

\(\Rightarrow Q=\left(-1\right)^2\cdot4=1\cdot4=4\)

\(TH2:a=b=c=d\)

\(\Rightarrow Q=\left(\frac{a+a}{a+a}\right)^2+\left(\frac{a+a}{a+a}\right)^2+\left(\frac{a+a}{a+a}\right)^2+\left(\frac{a+a}{a+a}\right)^2=1^2\cdot4=1\cdot4=4\)

Vậy Q=4

18 tháng 7 2017

- viết lại cái đề

* Áp dụng tính chất của dãy tỉ số bằng nhau:

\(\frac{a}{3b}=\frac{b}{3c}=\frac{c}{3d}=\frac{d}{3a}=\frac{a+b+c+d}{3.\left(a+b+c+d\right)}=\frac{1}{3}\)

* Vậy \(\frac{a}{3b}=\frac{1}{3}\Rightarrow3a=3b\Rightarrow a=b\left(1\right)\)

\(\frac{b}{3c}=\frac{1}{3}\Rightarrow3b=3c\Rightarrow b=c\left(2\right)\)

\(\frac{c}{3d}=\frac{1}{3}\Rightarrow3c=3d\Rightarrow c=d\left(3\right)\)

\(\frac{d}{3a}=\frac{1}{3}\Rightarrow3d=3a\Rightarrow d=a\left(4\right)\)

từ (1),(2),(3),(4) ta có:

a=b,b=c,c=d,d=a

=> a=b=c=d

26 tháng 7 2015

áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{a}{3b}=\frac{b}{3c}=\frac{c}{3d}=\frac{d}{3a}==\frac{a+b+c+d}{3b+3c+3d+3a}=\frac{a+b+c+d}{3.\left(a+b+c+d\right)}=\frac{1}{3}\)

suy ra:

\(\frac{a}{3b}=\frac{1}{3}\Rightarrow a=\frac{1}{3}.3b=b\)

\(\frac{b}{3c}=\frac{1}{3}\Rightarrow b=\frac{1}{3}.3c=c\)

\(\frac{c}{3d}=\frac{1}{3}\Rightarrow c=\frac{1}{3}.3d=d\)

=>a=b=c=d

26 tháng 7 2015

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{a}{3b}=\frac{b}{3c}=\frac{c}{3d}=\frac{d}{3a}=\frac{a+b+c+d}{3b+3c+3d+3a}=\frac{a+b+c+d}{3\left(b+c+d+a\right)}=\frac{1}{3}\)

\(\Rightarrow a=\frac{1}{3}.3b=b\)  (1)

      \(b=\frac{1}{3}.3c=c\)   (2)

      \(c=\frac{1}{3}.3d=d\)   (3)

      \(d=\frac{1}{3}.3a=a\)   (4)

Từ (1), (2), (3), (4) suy ra: a = b = c = d   (đpcm)