Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:a/b<c/d<=>a.d<b.c
<=>2018a.d<2018b.c
<=>2018a.d+c.d<2018b.c+d.c
<=>d(2018a+c)<c(2018b+d)
<=>2018a+c/2018b+d<c/d(dpcm)
Ta có: Để \(\frac{2018\cdot a+c}{2018\cdot b+d}< \frac{c}{d}\Rightarrow\left(2018\cdot a+c\right)\cdot d< \left(2018\cdot b+d\right)\cdot c\)
\(2018\cdot a\cdot d+c\cdot d< 2018\cdot b\cdot c+c\cdot d\)
\(2018\cdot a\cdot d< 2018\cdot b\cdot c\)(bỏ cả 2 vế đi \(c\cdot d\))(gọi là (1))
Vì \(\frac{a}{b}< \frac{c}{d}\Rightarrow a\cdot d< b\cdot c\Rightarrow2018\cdot a\cdot d< 2018\cdot b\cdot c=\left(1\right)\)Mà (1) bằng \(\frac{2018\cdot a+c}{2018\cdot b+d}< \frac{c}{d}\) (điều phải chứng minh)
sao giờ lớp 6 toàn học kiến thức lớp 8 thế
cái đầu tiên, chuyển 2ab sang thì vế trái phân tích được thành (a-b)^2 lớn hơn bằng 0
cái thứ 2, tách ra được a/c+b/c+a/b+c/b+b/a+c/a=\(\frac{a}{b}+\frac{b}{a}+\frac{b}{c}+\frac{c}{b}+\frac{a}{c}+\frac{c}{a}\)\(=\frac{a^2+b^2}{ab}\)cộng với 2 cái kia nữa
có a^2+b^2 \(\ge\)2ab suy ra phân số lớn hơn bằng 2, 2 cái kia tương tự suy ra S>=6
Ta có :
\(\frac{a}{a+b+c}>\frac{a}{a+b+c+d}\)
\(\frac{b}{b+c+d}>\frac{b}{a+b+c+d}\)
\(\frac{c}{c+d+a}>\frac{c}{a+b+c+d}\)
\(\frac{d}{d+a+b}>\frac{d}{a+b+c+d}\)
\(\Rightarrow\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}>\frac{a}{a+b+c+d}+\frac{b}{a+b+c+d}+\frac{c}{a+b+c+d}+\frac{d}{a+b+c+d}=1\)\(\Rightarrow A>1\)( 1 )
Lại có :
\(\frac{a}{a+b+c}< \frac{a+d}{a+b+c+d}\)
\(\frac{b}{b+c+d}< \frac{b+a}{a+b+c+d}\)
\(\frac{c}{c+d+a}< \frac{c+b}{a+b+c+d}\)
\(\frac{d}{d+a+b}< \frac{d+c}{a+b+c+d}\)
\(\Rightarrow\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}< \frac{a+d}{a+b+c+d}+\frac{a+b}{a+b+c+d}+\frac{c+b}{a+b+c+d}+\frac{d+c}{a+b+c+d}=2\)
\(\Rightarrow A< 2\)( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\)A không phải là số tự nhiên ( vì 1 < A < 2 )
Ta thấy:
\(\frac{a+d}{a+b+c+d}>\frac{a}{a+b+c}>\frac{a}{a+b+c+d}\)
\(\frac{b+a}{a+b+c+d}>\frac{b}{b+c+d}>\frac{b}{a+b+c+d} \)
\(\frac{c+b}{a+b+c+d}>\frac{c}{c+d+a}>\frac{c}{a+b+c+d}\)
\(\frac{d+c}{a+b+c+d}>\frac{d}{d+a+b}>\frac{d}{a+b+c+d}\)
Do đó:
\(\frac{a+d}{a+b+c+d}+\frac{b+a}{a+b+c+d}+\frac{c+d}{a+b+c+d}+\frac{d+c}{a+b+c+d}>A\)
VÀ \(A>\)\(\frac{a}{a+b+c+d}+\frac{b}{a+b+c+d}+\frac{c}{a+b+c+d}+\frac{d}{a+b+c+d}\)
\(\Rightarrow2>A>1\)
\(\Rightarrow\)A không là số tự nhiên với a,b,c,d > 0
Vậy A không là số tự nhiên với a,b,c,d > 0
\(A=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{99}{100}\)
\(\Rightarrow A>\frac{1}{2}.\frac{2}{3}.\frac{4}{5}...\frac{98}{99}\)
\(\Rightarrow A^2>\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}...\frac{98}{99}.\frac{99}{100}\)
\(\Rightarrow A^2>\frac{1}{100}=\frac{1}{10^2}\)
Vậy \(A>\frac{1}{10}\)
\(A=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{9999}{10000}\)
\(\Rightarrow A>\frac{1}{2}.\frac{2}{3}.\frac{4}{5}...\frac{9998}{9999}\)
\(\Rightarrow A^2>\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}...\frac{9998}{9999}.\frac{9999}{10000}\)
\(\Rightarrow A^2>\frac{1}{10000}=\frac{1}{100^2}\)
\(VayA>\frac{1}{100}=B\)
Áp dụng \(\frac{x}{y}>\frac{x}{y+m}\) ( x,y,m là số tự nhiên lớn hơn 0)
Ta có \(\frac{a}{a+b}>\frac{a}{a+b+c}\forall a,b,c dương\)
\(\frac{b}{b+c}>\frac{b}{b+c+a}\forall a,b,c dương\)
\(\frac{c}{c+a}>\frac{c}{c+a+b}\forall a,b,c dương\)
=> \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{b+c+a}+\frac{c}{c+a+b}\)
=> \(A>\frac{a+b+c}{a+b+c}=1\)
Vậy A>1
A = -4/5x(1/2+1/3+1/4)= -4/5x1 = -4/5
B = 6/19 x ( 3/4+4/3+-1/2)= 6/19x 19 = 6
C = 2002/2003x(3/4+5/6-19/12)=2003/2002x0=0
Ta có: \(\frac{A}{B}+\frac{A}{C}=\frac{AC+AB}{BC}=\frac{A^2}{BC}\)
=> AC+AB=A2
=>A(B+C)=AxA
=> A=B+C