Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(\frac{a}{b}=\frac{c}{d}=\frac{a-c}{b-d}\)
-->\(\frac{a}{b}=\frac{a-c}{b-d}\left(đpcm\right)\)
2) ta có \(\frac{a}{b}=\frac{c}{d}\)
đặt a=kb và c=kd
\(\frac{a+b}{a-b}=\frac{kb+b}{kb-b}=\frac{b\left(k+1\right)}{b\left(k-1\right)}=\frac{k+1}{k-1}\left(1\right)\)
\(\frac{c+d}{c-d}=\frac{kd+d}{kd-d}=\frac{d\left(k+1\right)}{d\left(k-1\right)}=\frac{k+1}{k-1}\left(2\right)\)
từ (1) và (2) --> \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\left(đpcm\right)\)
Áp dụng TCCDTSBN, ta có :
\(\frac{a1}{a2}=\frac{a2}{a3}=...=\frac{a9}{a1}=\frac{a1+a2+...+a9}{a2+a3+...+a1}=1\)
=> a1/a2 = 1 => a1 = a2
....
a9/a1 = 1 => a9 = a1
Từ tất cả điều trên => đpcm
Ta có :
\(c=\frac{bd}{b-d}\)
\(\Rightarrow b-d=\frac{bd}{c}\left(c\ne0\right)\)
\(a=b+c\Rightarrow c=a-b\)
\(\Rightarrow c=\frac{bd}{b-d}=a-b\)
\(\Rightarrow bd=\left(a-b\right).\left(b-d\right)\)
\(\Rightarrow ab-ad-b^2+bd=bd\)
\(\Rightarrow a\left(b-d\right)-b^2=0\)
\(\Rightarrow a.\frac{bd}{c}-b^2=0\)
\(\Rightarrow\frac{ad}{c}-b=0\)
\(\Rightarrow\frac{ad-bc}{c}=0\)
\(\Rightarrow ad-bc=0\)
\(\Rightarrow ad=bc\)
\(\Rightarrow\frac{a}{b}=\frac{c}{d}\left(đpcm\right)\)
Chúc bạn học tốt !!!
Áp dụng t/chất dãy tỉ số bằng nhau :
\(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}=\frac{\left(a+b+c\right)-\left(a-b+c\right)}{\left(a+b-c\right)-\left(a-b-c\right)}=\frac{2b}{2b}=1\) (bỏ dấu ngoặc)
\(\Rightarrow a+b+c=a+b-c\Rightarrow c=-c\Rightarrow2c=0\Rightarrow c=0\) (đpcm)