Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a) Vì $A(0;3)$ nên $A$ cũng thuộc đường thẳng $y=3$. Do đó $A,B$ cùng thuộc đường thẳng $y=3$
\(x_A=0\Rightarrow A\in Oy\) nên \(OA\) trùng với trục tung.
Do đo \(AB\perp OA\Rightarrow S_{AOB}=\frac{AB.AO}{2}(1)\)
\(B(x_0,y_0)=(y=ax)\cap (y=3)\Rightarrow y_0=3;x_0=\frac{y_0}{a}=\frac{3}{a}\)
\(\Rightarrow AB=\sqrt{(\frac{3}{a}-0)^2+(3-3)^2}=\frac{3}{a}(2)\) (do a>0)
\(OA=\sqrt{(0-0)^2+(3-0)^2}=3(3)\)
Từ \((1); (2); (3)\Rightarrow 1,5=S_{AOB}=\frac{\frac{3}{a}.3}{2}\Leftrightarrow a=3\)
b)
\(C(x_1,y_1)\in (y=3x)\Rightarrow y_1=3x_1\)
Do đó: \(\frac{x_1+1}{y_1+3}=\frac{x_1+1}{3x_1+3}=\frac{x_1+1}{3(x_1+1)}=\frac{1}{3}\)
a) theo tính chất ta có: f(0+0)= f(0)+f(0)
=> f(0)=f(0)+f(0)
=> f(0)-f(0)=f(0)+f(0)-f(0)
=> 0=f(0)
hay f(0)=0
b) f(0)=f(-x+x)=f(-x)+f(x)
=>0=f(-x)+f(x)
=> f(-x)=0-f(x)=-f(x)
c) \(f\left(x_1-x_2\right)=f\left(x_1+\left(-x_2\right)\right)=f\left(x_1\right)+f\left(-x_2\right)=f\left(x_1\right)-f\left(x_2\right)\)
Nguyễn Việt Lâm Trần Trung Nguyên tran nguyen bao quan Shurima Azir Nguyễn Thanh Hằng Mysterious Person Phùng Khánh Linh Aki Tsuki
Kiến thức cơ bản :v
GT : \(\left(x_1a-y_1b\right)^{2n}+\left(x_2a-y_2b\right)^{2n}+\left(x_3a+y_3b\right)^{2n}+...+\left(x_ma-y_mb\right)^{2n}\le0\)
Có : \(\left(x_1a-y_1b\right)^{2n}+\left(x_2a-y_2b\right)^{2n}+\left(x_3a-y_3b\right)^{2n}+...+\left(x_ma-y_mb\right)^{2n}\ge0\)
\(\Rightarrow\)\(x_1a-y_1b=x_2a-y_2b=x_3a-y_3b=...=x_ma-y_mb=0\)
\(\Rightarrow\)\(x_1a=y_1b\)\(;\)\(x_2a=y_2b\)\(;\)\(x_3a=y_3b\)\(;\)\(...\)\(;\)\(x_ma=y_mb\)
\(\Rightarrow\)\(\frac{x_1}{y_2}=\frac{x_2}{y_2}=\frac{x_3}{y_3}=...=\frac{x_m}{y_m}=\frac{b}{a}\) \(\left(1\right)\)
Tính chất dãy tỉ số bằng nhau :
\(\frac{x_1}{y_1}=\frac{x_2}{y_2}=\frac{x_3}{y_3}=...=\frac{x_m}{y_m}=\frac{x_1+x_2+x_3+...+x_m}{y_1+y_2+y_3+...+y_m}=\frac{b}{a}\) ( đpcm )
Ta có \(\left\{{}\begin{matrix}\left(2x_1-3y_1\right)^{2004}\ge0\\......\\\left(2x_{2005}-3y_{2005}\right)^{2004}\ge0\end{matrix}\right.\) \(\forall x_1;x_2...x_{2005};y_1;y_2;...y_{2005}\)
Mà theo đề cho \(\left(2x_1-3y_1\right)^{2004}+...+\left(2x_{2005}-3y_{2005}\right)^{2004}\le0\)
\(\Rightarrow\left\{{}\begin{matrix}\left(2x_1-3y_1\right)^{2004}=0\\\left(2x_2-3y_2\right)^{2004}=0\\.........\\\left(2x_{2005}-3y_{2005}\right)^{2004}=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2x_1-3y_1=0\\2x_2-3y_2=0\\........\\2x_{2005}-3y_{2005}=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=\dfrac{3}{2}y_1\\x_2=\dfrac{3}{2}y_2\\.....\\x_{2005}=\dfrac{3}{2}y_{2005}\end{matrix}\right.\)
Từ đó ta có:
\(\dfrac{x_1+x_2+...+x_{2005}}{y_1+y_2+...+y_{2005}}=\dfrac{\dfrac{3}{2}y_1+\dfrac{3}{2}y_2+...+\dfrac{3}{2}y_{2005}}{y_1+y_2+...+y_{2005}}\)
\(=\dfrac{\dfrac{3}{2}\left(y_1+y_2+...+y_{2005}\right)}{y_1+y_2+...+y_{2005}}=\dfrac{3}{2}=1.5\) (đpcm)
Ghi lại đề đi bạn, nhìn qua dấu các biểu thức là biết bạn ghi sai đề rồi
Do \(x_1,y_1\) lần lượt là các nghiệm của \(F\left(x\right)=ax+b\) và \(G\left(y\right)=cy+d\) nên ta có \(ax_1+b=cy_1+d=0\) (*)
Mặt khác, \(ad=bc\Leftrightarrow\dfrac{a}{b}=\dfrac{c}{d}\). Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\left(k\ne0\right)\) thì suy ra \(a=kb;c=kd\). Thay vào (*), ta có \(kbx_1+b=kdy_1+d=0\) \(\Leftrightarrow b\left(kx_1+1\right)=d\left(ky_1+1\right)=0\) \(\Leftrightarrow kx_1+1=ky_1+1=0\) (do \(b,d\ne0\)) \(\Leftrightarrow x_1=y_1\) (đpcm)