Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{\left(ax+by+cz\right)^2}{x^2+y^2+z^2}=a^2+b^2+c^2\)
\(\Rightarrow\left(ax+by+cz\right)^2=\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)\)
\(\Rightarrow a^2x^2+b^2y^2+c^2z^2+2abxy+2acxz+2bcyz\)\(=a^2x^2+b^2x^2+c^2x^2+a^2y^2+b^2y^2+c^2y^2+a^2z^2+b^2z^2+c^2z^2\)
\(\Rightarrow b^2x^2-2abxy+a^2y^2+b^2z^2-2bcyz+c^2y^2+a^2z^2-2acxz+c^2x^2=0\)
\(\Rightarrow\left(bx-ay\right)^2+\left(bz-cy\right)^2+\left(az-cx\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}bx-ay=0\\bz-cy=0\\az-cx=0\end{cases}\Rightarrow\hept{\begin{cases}bx=ay\\bz=cy\\az=cx\end{cases}\Rightarrow}\hept{\begin{cases}\frac{b}{y}=\frac{a}{x}\\\frac{b}{y}=\frac{c}{z}\\\frac{a}{x}=\frac{c}{z}\end{cases}\Rightarrow}\frac{a}{x}=\frac{b}{y}=\frac{c}{z}}\)
\(\frac{\left(ax+by+cz\right)^2}{x^2+y^2+z^2}=a^2+b^2+c^2\Leftrightarrow\left(ax+by+cz\right)^2=\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)\)
\(\Leftrightarrow a^2x^2+b^2y^2+c^2z^2+2\left(abxy+bcyz+cazx\right)=a^2x^2+a^2y^2+a^2z^2+b^2x^2+b^2y^2+b^2z^2+c^2x^2+c^2y^2+c^2z^2\)\(\Leftrightarrow a^2y^2-2ay\cdot bx+b^2x^2+b^2z^2-2bz\cdot cy+c^2y^2+a^2z^2-2az\cdot cx+c^2x^2=0\)
\(\Leftrightarrow\left(ay-bx\right)^2+\left(bz-cy\right)^2+\left(az-cx\right)^2=0\)
mà \(\left(ay-bx\right)^2;\left(bz-cy\right)^2;\left(az-cx\right)^2\ge0\)nên \(\left(ay-bx\right)^2=\left(bz-cy\right)^2=\left(az-cx\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}ay=bx\\bz=cy\\az=cx\end{cases}\Leftrightarrow\frac{a}{x}}=\frac{b}{y}=\frac{c}{z}\left(x,y,z\ne0\right)\)(ĐPCM)
Bạn ko hiểu chỗ nào cứ hỏi lại mình nhé
x2-yz=a=>ax=x(x2-yz)=x3-xyz
tương tự và cộng lại ta có ax+by+cz=x3+y3+z3-3xyz=(x+y+z)(x2+y2+z2-xy-yz-zx)=(x+y+z)(a+b+c)
ta có đpcm
\(\left(a^2+b^2\right)\left(x^2+y^2\right)=\left(ax+by\right)^2\)
\(\Rightarrow a^2x^2+b^2x^2+a^2y^2+b^2y^2=a^2x^2+2axby+b^2y^2\)
\(\Rightarrow b^2x^2-2axby+a^2y^2=0\)
\(\Rightarrow\left(bx-ay\right)^2=0\)
\(\Rightarrow bx=ay\Rightarrow\frac{a}{x}=\frac{b}{y}\)
cho ( a2 + b2 ) ( x2 + y2 ) = (ax + by ) ( x,y khác 0)
cm : \(\dfrac{a}{x}=\dfrac{b}{y}\)
giúp mk vs
ta có
\(\left(a^2+b^2\right)\left(x^2+y^2\right)=\left(ax+by\right)^2\)
\(< =>a^2x^2+a^2y^2+b^2x^2+b^2y^2=a^2x^2+2axby+b^2y^2\)
<=> \(a^2y^2+b^2x^2=2axby\)
<=> \(a^2y^2+b^2x^2-2axby=0\)
<=> \(\left(ax-bx\right)^2=0\)
<=> \(ay-bx=0\)
<=> \(ay=bx\)
<=> \(\dfrac{a}{x}=\dfrac{b}{y}\)(đpcm)
Ta có: \((a^2+b^2)(x^2+y^2)=(ax+by)^2 \)
\(\Leftrightarrow\) \(a^2x^2 + a^2y^2 + b^2x^2 + b^2y^2 = a^2x^2 + 2abxy + b^2y^2 \)
\(\Leftrightarrow\) \(a^2y^2 + b^2x^2 = 2abxy \)
\(\Leftrightarrow\) \(a^2y^2 + b^2x^2 - 2abxy = 0 \)
\(\Leftrightarrow\) \((ay - bx)^2 = 0 \)
\(\Rightarrow\) \(ay - bx = 0 \)
\(\Rightarrow\) \(ay = bx \)
\(\Rightarrow\) \(\dfrac{a}{x}=\dfrac{b}{y}\)( Đpcm )
\(\left(a^2+b^2\right)\left(x^2+y^2\right)=\left(ax+by\right)^2\)
\(\Rightarrow a^2x^2+a^2y^2+b^2x^2+b^2y^2=a^2x^2+2axby+b^2y^2\)
\(\Rightarrow a^2y^2+b^2x^2=2axby\)
\(\Rightarrow a^2y^2-2axby+b^2x^2=0\)
\(\Rightarrow\left(ay\right)^2-2.ay.bx+\left(bx\right)^2=0\)
\(\Rightarrow\left(ay-bx\right)^2=0\)
\(\Rightarrow ay-bx=0\Rightarrow ay=bx\Rightarrow\frac{a}{x}=\frac{b}{y}\)