K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 9 2021

Bài 2: 

b. \(\sqrt{\left(3x+1\right)^2}=25\)

<=> \(|3x+1|=25\)

<=> \(\left[{}\begin{matrix}3x+1=-25\\3x+1=25\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-26}{3}\\x=8\end{matrix}\right.\)

Bài 3: 

Ta có: \(\dfrac{5}{\sqrt{7}+\sqrt{2}}+\dfrac{2}{3+\sqrt{7}}+\dfrac{2-\sqrt{2}}{\sqrt{2}-1}\)

\(=\sqrt{7}-\sqrt{2}+3-\sqrt{7}+\sqrt{2}\)

=3

11 tháng 11 2021

a: \(\left\{{}\begin{matrix}3x+6y=4\\x+4y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{1}{3}\\x=\dfrac{2}{3}\end{matrix}\right.\)

Các anh chị cho em hỏi gấp câu cuối 2 bài toán hình học khó lớp 9 ạBài 1: Cho tam giác ABC có AB = 6cm, AC=4,5cm, BC=7.5cm. a) CM: ABC vuông tại A. b) Tính các góc B,C và đường cao AH của tam giác. c) Lấy M bất kì trên cạnh BC. Gọi hình chiếu của M trên AB, AC lần lượt là P và Q. Cm: PQ=AM. Hỏi M ở vị trí nào thì PQ có độ dài nhỏ nhất? d) Tìm tập hợp các điểm N sao cho diện tích tam giác ABC bằng diện...
Đọc tiếp

Các anh chị cho em hỏi gấp câu cuối 2 bài toán hình học khó lớp 9 ạ

Bài 1: Cho tam giác ABC có AB = 6cm, AC=4,5cm, BC=7.5cm. 
a) CM: ABC vuông tại A. 
b) Tính các góc B,C và đường cao AH của tam giác. 
c) Lấy M bất kì trên cạnh BC. Gọi hình chiếu của M trên AB, AC lần lượt là P và Q. 
Cm: PQ=AM. Hỏi M ở vị trí nào thì PQ có độ dài nhỏ nhất? 
d) Tìm tập hợp các điểm N sao cho diện tích tam giác ABC bằng diện tích tam giác NBC. 

Bài 1 giải giúp em câu d ạ. 

Bài 2: Cho tam giác ABC vuông tại A có AB=3cm, BC=5cm 
a) Giải tam giác ABC. 
b) Kẻ AK _I_ BC tại K, KD _I_ AB tại D, KE_I_AC tại E. 
Cmr: ADKE là hình chữ nhật. Tính độ dài DE. 
c) Cm: AD.AB=AE.AC và tam giác AED ~ ABC 
d) Gọi M là trđiểm của BC. Cmr: DE_I_AM. 
e) Gọi F là giao điểm của DK và AM. Tính S tứ giác ADFE. 

Bài 2 giải giúp em câu e ạ. 

Em xin cảm ơn.

0

c: Thay y=-x vào (P), ta được:

-x^2=-x

=>x^2=x

=>x(x-1)=0

=>x=0 hoặc x=1

Khi x=0 thì y=0

Khi x=1 thì y=-1

Vậy: Điểm cần tìm là M(1;-1) hoặc O(0;0)

a: Xét (O) có

MA là tiếp tuyến

MB là tiếp tuyến

Do đó: MA=MB

hay M nằm trên đường trung trực của AB(1)

Ta có: OA=OB

nên O nằm trên đường trung trực của AB(2)

Từ (1) và (2) suy ra OM⊥AB

NV
28 tháng 8 2021

20.

Đặt \(\left(x;y;z\right)=\left(a^3;b^3;c^3\right)\Rightarrow abc=1\)

\(a^3+b^3=\left(a+b\right)\left(a^2+b^2-ab\right)\ge\left(a+b\right)\left(2ab-ab\right)=ab\left(a+b\right)\)

\(\Rightarrow P=\sum\dfrac{1}{a^3+b^3+1}\le\sum\dfrac{1}{ab\left(a+b\right)+1}=\sum\dfrac{abc}{ab\left(a+b\right)+abc}=\sum\dfrac{c}{a+b+c}=1\)

21.

Đề bài sai, biểu thức này ko tồn tại min hay max (nó chỉ tồn tại khi x;y;z là số thực không âm. Khi đó min P xảy ra tại \(\left(x;y;z\right)=\left(\dfrac{1}{2};\dfrac{1}{2};0\right)\) và hoán vị)

22. 

Đề bài sai, biểu thức không tồn tại min. Nó chỉ tồn tại khi có thêm điều kiện x;y;z là độ dài 3 cạnh của 1 tam giác (em cứ thay giá trị \(x=2;y=1.9999;z=8.0001\) vào tính giá trị P sẽ hiểu tại sao đề sai)

5 tháng 11 2021

a) \(BC^2=AB^2+AC^2\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{3^2+4^2}=5\left(cm\right)\)

\(\left\{{}\begin{matrix}sinB=\dfrac{AC}{BC}=\dfrac{4}{5}\Rightarrow\widehat{B}\approx53^0\\sinC=\dfrac{AB}{BC}=\dfrac{3}{5}\Rightarrow\widehat{C}=37^0\end{matrix}\right.\)

c) Ta có: \(\left\{{}\begin{matrix}AB=BD\\AC=DC\end{matrix}\right.\)(t/c 2 tiếp tuyến cắt nhau)

=> BC là đường trung trực AD

\(\Rightarrow AD\perp BC\)

Áp dụng HTL trong tam giác BDC vuông tại D:

\(FB.FC=FD^2\Rightarrow4FB.FC=4FD^2=\left(2FD\right)^2=AD^2\)

Em có một câu hỏi này rất băn khoăn ạ, mong mọi người có thể đọc và chia sẻ kinh nghiệm cho em.Trong sách tham khảo mà em đang đọc có 2 bài tập vận dụng như sau:BTVD 1: Cho các số thực x,y thoả mãn \(x^2+xy+2y^2=1\). Tìm GTNN và GTLN của biểu thức \(P=x-2y+3\).BTVD 2: Cho các số thực thoả mãn ĐK: \(3x+y+2z=1\). Tìm GTNN và GTLN của biểu thức \(P=x^2+y^2+z^2\).Em nghĩ 2 bài này chắc chắn đều có một số phương pháp giải...
Đọc tiếp

Em có một câu hỏi này rất băn khoăn ạ, mong mọi người có thể đọc và chia sẻ kinh nghiệm cho em.

Trong sách tham khảo mà em đang đọc có 2 bài tập vận dụng như sau:

BTVD 1: Cho các số thực x,y thoả mãn \(x^2+xy+2y^2=1\). Tìm GTNN và GTLN của biểu thức \(P=x-2y+3\).

BTVD 2: Cho các số thực thoả mãn ĐK: \(3x+y+2z=1\). Tìm GTNN và GTLN của biểu thức \(P=x^2+y^2+z^2\).

Em nghĩ 2 bài này chắc chắn đều có một số phương pháp giải khác nhau. Nhưng trước đó trong phần bài tập ví dụ, sách có đưa ra một số bài toán khác cùng dạng và có hướng dẫn giải chi tiết theo phương pháp tách ra thành tổng các bình phương để đánh giá nên em nghĩ 2 bài này cũng có thể làm theo cách này.

(Cụ thể em xin lấy ví dụ sau:

BTVD: Cho các số thực m, n, p thoả mãn:

\(2m^2+2n^2+4p^2+3mn+mp+2np=\dfrac{3}{2}\)

Tìm GTNN  và GTLN của \(B=m+n+p\)

HDG: Giả thiết \(\Rightarrow4m^2+4n^2+8p^2+6mn+2mp+4np=3\)

\(\Leftrightarrow3\left(m+n+p\right)^2+\left(m-2p\right)^2+\left(n-p\right)^2=3\)

\(\Rightarrow\left(m+n+p\right)^2\le1\Rightarrow-1\le m+n+p\le1\))

Em thấy cách giải nhìn rất đơn giản nhưng thực sự để nghĩ ra cách nhân, cách tách là điều không dễ. Em không biết để làm dạng này là phải đoán, phải thử cách tách hay có mẹo nào để biết tách không ạ, để nếu như đi thi gặp dạng này có thể làm nhanh. Mong mọi người có thể giúp em.

8
28 tháng 3 2022

bạn không biết làm thì đừng bình luận vào đây

28 tháng 3 2022

hỏi giáo sư nha bạn