Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi \(M\left(x;y\right)\) là 1 điểm bất kì thuộc (E) \(\Rightarrow\dfrac{x^2}{9}+\dfrac{y^2}{4}=1\) (1)
Gọi \(M'\left(x';y'\right)\) là ảnh của M qua phép tịnh tiến nói trên \(\Rightarrow M'\in\left(E'\right)\)
\(\left\{{}\begin{matrix}x'=x+2\\y'=y+1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=x'-2\\y=y'-1\end{matrix}\right.\)
Thế vào (1):
\(\dfrac{\left(x'-2\right)^2}{9}+\dfrac{\left(y'-1\right)^2}{4}=1\)
Hay pt (E') có dạng: \(\dfrac{\left(x-2\right)^2}{9}+\dfrac{\left(y-1\right)^2}{4}=1\)
c) Đường thẳng d có vecto pháp tuyến là n→(1;-2) nên 1 vecto chỉ phương của d là(2; 1)
=> Vecto v→ không cùng phương với vecto chỉ phương của đường thẳng d
=> Qua phép tịnh tiến v→ biến đường thẳng d thành đường thẳng d’ song song với d.
Nên đường thẳng d’ có dạng : x- 2y + m= 0
Lại có B(-1; 1) d nên B’(-2;3) d’
Thay tọa độ điểm B’ vào phương trình d’ ta được:
-2 -2.3 +m =0 ⇔ m= 8
Vậy phương trình đường thẳng d’ là:x- 2y + 8 = 0