Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, có AM = 2AC mà để AM lớn nhất
<=> AC lớn nhất
có AC là dây cung của đường tròn (O) đk AB
=> AC =< AB
dấu = xảy ra khi C trùng B
b, AM = 2R.căn 3 mà AM = 2AC
<=> 2AC = 2R.căn 3
<=> AC = R.căn 3
xét tam giác ABC vuông tại C => AC^2 + CB^2 = AB^2
Mà BA = 2R
=> (R.căn 3)^2 + BC^2 = (2R)^2
<=> 3R^2 + BC^2 = 4R^2
<=> BC^2 = R^2
<=> BC = R
vậy lấy điểm C trên (O) sao cho BC = R để AM = 2R.căn 3
c, xét tam giác BAM có BC là đường trung tuyến đồng thời là đường cao
=> tam giác BAM cân tại B
=> BA = BM mà AB không đổi
=> BM không đổi
=> khi C di động trên (O) thì M di động trên đường tròn (B) cố định
a) Ta có: góc AME = 90 độ (góc nt chắn nửa đt)
=> AN vuông góc EM tại M
Mặt khác: ACN = 90 độ (góc nt chắn nửa đt)
=> AE vuông góc CN tại C
Xét tam giác ANE có : NC và EM là các đường cao
=> B là trực tâm tam giác ANE
=> AB vuông góc NE (t/c trực tâm tam giác)
b) Ta có M là trung điểm AN (t/c đối xứng)
và M cũng là trung điểm EF (t/c đói xứng)
Do đó tứ giác AENF là hính bình hành
=> FA song song NE
Mà NE vuông góc AB (cmt)
=> FA vuông góc AB tại A thuộc (O)
Vậy FA là tiếp tuyến của đt (O)
c)Ta có M là trung điểm AN (t/c đối xứng)
AN vuông góc BF tại M (góc AMB =90 độ)
=> BF là đường trung trực của AN
Xét tam giác AFB và tam giác NFB có
1/ BF cạnh chung
2/ FA = FN (t/c đ trung trực)
3/ BA = BN (t/c đ trung trực)
=> tam giác AFB = tam giác NFB
=> góc FAB = góc FNB
Mà FAB = 90 độ (cmt)
=> góc FNB bằng 90 độ
=> FN vuông góc với BN tại N thuộc (B;BN)
Mà BN = AB
=> FN là tiếp tuyến cửa đt (B;AB)
Bài 4:
a:
Xét (O) có
ΔCED nội tiếp
CD là đường kính
=>ΔCED vuông tại E
ΔOEF cân tại O
mà OI là đường cao
nên I là trung điểm của EF
Xét tứ giác CEMF có
I là trung điểm chung của CM và EF
CM vuông góc EF
=>CEMF là hình thoi
=>CE//MF
=<MF vuông góc ED(1)
Xét (O') có
ΔMPD nội tiêp
MD là đường kính
=>ΔMPD vuông tại P
=>MP vuông góc ED(2)
Từ (1), (2) suy ra F,M,P thẳng hàng
b: góc IPO'=góc IPM+góc O'PM
=góc IEM+góc O'MP
=góc IEM+góc FMI=90 độ
=>IP là tiếp tuyến của (O')