K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Sửa đề: MK\(\perp\)AB

Xét tứ giác BIMK có \(\widehat{BIM}+\widehat{BKM}=90^0+90^0=180^0\)

nên BIMK là tứ giác nội tiếp

=>B,I,M,K cùng thuộc một đường tròn

b: Xét tứ giác IMHC có \(\widehat{MIC}+\widehat{MHC}=90^0+90^0=180^0\)

nên IMHC là tứ giác nội tiếp

=>\(\widehat{MHI}=\widehat{MCI}\)(1)

Ta có: BIMK là tứ giác nội tiếp

=>\(\widehat{MIK}=\widehat{MBK}\left(2\right)\)

Xét (O) có

\(\widehat{MCB}\) là góc nội tiếp chắn cung MB

\(\widehat{MBK}\) là góc tạo bởi tiếp tuyến BK và dây cung BM

Do đó: \(\widehat{MCB}=\widehat{MBK}=\widehat{MCI}\left(3\right)\)

Từ (1),(2),(3) suy ra \(\widehat{MIK}=\widehat{MHI}\)

Ta có: BIMK là tứ giác nội tiếp

=>\(\widehat{MKI}=\widehat{MBI}=\widehat{MBC}\left(4\right)\)

Ta có: IMHC là tứ giác nội tiếp

=>\(\widehat{MIH}=\widehat{MCH}\left(5\right)\)

Xét (O) có

\(\widehat{MBC}\) là góc nội tiếp chắn cung MC

\(\widehat{MCH}\) là góc tạo bởi tiếp tuyến CH và dây cung CM

Do đó: \(\widehat{MBC}=\widehat{MCH}\left(6\right)\)

Từ (4),(5),(6) suy ra \(\widehat{MIH}=\widehat{MKI}\)

Xét ΔMIH và ΔMKI có

\(\widehat{MIH}=\widehat{MKI}\)

\(\widehat{MHI}=\widehat{MIK}\)

Do đó: ΔMIH~ΔMKI

=>\(\dfrac{MI}{MK}=\dfrac{MH}{MI}\)

=>\(MI^2=MH\cdot MK\)

12 tháng 4 2021

_undefined

13 tháng 11 2023

Xét (O) có

AB,AC là tiếp tuyến

=>AB=AC

Ta có: OB=OC

AB=AC

Do đó: OA là đường trung trực của BC

=>OA\(\perp\)BC

Câu 1: Cho (O;R) và điểm A nằm ngoài đường tròn (O). Vẽ 2 tiếp tuyến AB, AC của (O) (B,C: tiếp điểm). Vẽ cát tuyến ADE của (O); D nằm giữa D & E; tia AD nằm giữa 2 tia AB và AO.a) Gọi H là giao điểm của OA và BC. C/m: DEOH nội tiếpb) Đường thẳng AO cắt (O) tại M và N (M nằm giữa A và O). C/m: EH.AD= MH.ANCâu 2: Cho nửa đường tròn tâm (O;R) đường kính AB và điểm C trên đường tròn sao cho CA=CB. Gọi M...
Đọc tiếp

Câu 1: Cho (O;R) và điểm A nằm ngoài đường tròn (O). Vẽ 2 tiếp tuyến AB, AC của (O) (B,C: tiếp điểm). Vẽ cát tuyến ADE của (O); D nằm giữa D & E; tia AD nằm giữa 2 tia AB và AO.

a) Gọi H là giao điểm của OA và BC. C/m: DEOH nội tiếp

b) Đường thẳng AO cắt (O) tại M và N (M nằm giữa A và O). C/m: EH.AD= MH.AN

Câu 2: Cho nửa đường tròn tâm (O;R) đường kính AB và điểm C trên đường tròn sao cho CA=CB. Gọi M là trung điểm của dây cung AC. Nối BM cắt cung AC tại E; AE và BC kéo dài cắt nhau tại D.

a) C/m: MOCD là hình bình hành

b) Vẽ đường tròn tâm E bán kính EA cắt (O) tại điểm thứ 2 là N. Kẻ EF vuông góc với AC, EF cắt AN tại I, cắt (O) tại điểm thứ 2 là K; EB cắt AN tại H. C/m: BHIK nội tiếp.

Câu 3: Cho (O;R). Từ điểm S nằm ngoài đường tròn sao cho SO=2R. Vẽ tiếp tuyến SA,SB (A,B là tiếp tuyến). Vẽ cát tuyến SDE (D nằm giữa S và E), điểm O nằm trong góc ESB. Từ O kẻ đường vuông góc với OA cắt SB tại M. Gọi I là giao điểm của OS và (O).

a) C/m: MI là tiếp tuyến của (O)

b) Qua D kẻ đường vuông góc với OB cắt AB tại H và EB tại K. C/m: H là trung điểm của DK.

0