K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: Xét ΔMBO và ΔMAO có 

OB=OA

\(\widehat{BOM}=\widehat{AOM}\)

OM chung

Do đó: ΔMBO=ΔMAO

Suy ra: \(\widehat{MBO}=\widehat{MAO}=90^0\)

hay MA là tiếp tuyến của (O)

2: Xét tứ giác AOBM có 

\(\widehat{MAO}+\widehat{MBO}=180^0\)

nên AOBM là tứ giác nội tiếp

20 tháng 12 2023

loading... loading... 

10 tháng 12 2015

kho qua ha

 

a: Xét tứ giác ODAE có

góc ODA+góc OEA=180 độ

=>ODAE là tứ giác nội tiếp

b: \(AE=\sqrt{\left(3R\right)^2-R^2}=2\sqrt{2}\cdot R\)

\(OI=\dfrac{OE^2}{OA}=\dfrac{R^2}{3R}=\dfrac{R}{3}\)

c: Xét ΔDIK vuông tại I và ΔDHE vuông tại H có

góc IDK chung

=>ΔDIK đồng dạng vơi ΔDHE

=>DI/DH=DK/DE

=>DH*DK=DI*DE=2*IE^2

a: góc OAM+góc OBM=90+90=180 độ

=>AOBM nội tiếp

b: góc BOM=1/2*góc AOB=góc BCA

a giải thích em làm sao 1/2 AOB = góc BCA được ạ