Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
O A B C D E H F
a) Do D thuộc đường tròn (O), AB là đường kính nên \(\widehat{BDC}=90^o\Rightarrow BD\perp AC\)
Xét tam giác vuông ABC, đường cao BD ta có:
\(AB^2=AD.AC\) (Hệ thức lượng)
b) Xét tam giác BEC có O là trung điểm BC; OH // CE nên OH là đường trung bình của tam giác. Vậy nên H là trung điểm BE.
Ta có OH // CE mà CE vuông góc AB nên \(OH\perp BE\)
Xét tam giác ABE có AH là trung tuyến đồng thời đường cao nên nó là tam giác cân.
Hay AB = AE.
Từ đó ta có \(\Delta ABO=\Delta AEO\left(c-c-c\right)\Rightarrow\widehat{OEA}=\widehat{OBA}=90^o\)
Vậy AE là tiếp tuyến của đường tròn (O)
c) Xét tam giác vuông OBA đường cao BH, ta có:
\(OB^2=OH.OA\) (Hệ thức lượng)
\(\Rightarrow OC^2=OH.OA\Rightarrow\frac{OH}{OC}=\frac{OC}{OA}\)
Vậy nên \(\Delta OHC\sim\Delta OCA\left(c-g-c\right)\Rightarrow\widehat{OHC}=\widehat{OCA}\)
d) Ta thấy \(\widehat{OCF}=\widehat{FCE}\left(=\widehat{OFC}\right)\)
Lại có \(\widehat{OCH}=\widehat{ACE}\left(=\widehat{OAC}\right)\)
Nên \(\widehat{HCF}=\widehat{FCA}\) hay CF là phân giác góc HCA.
Xét tam giác HCA, áp dụng tính chất đường phân giác trong tam giác, ta có:
\(\frac{HF}{FA}=\frac{HC}{CA}\Rightarrow FA.HC=HF.CA\left(đpcm\right)\)
ở phần c còn cạnh nào nữa để 2 tam giác đấy đồng dạng vậy cậu
a, Xét ΔΔ ABC có OA=OB=OC=12AB.OA=OB=OC=12AB.
⇒Δ⇒Δ ABC vuông tại CC ⇒AC⊥BC.⇒AC⊥BC.
Ta có AD là tiếp tuyến của nửa đường tròn tâm O nên AD ⊥⊥ AB.
Trong ΔΔ ABD vuông tại A có AC⊥BD⇒BC.BD=AB2.AC⊥BD⇒BC.BD=AB2.
Mà AB = 2R nên BC.BD=4R2.BC.BD=4R2.
b, Tam giác ACD vuông tại C có I là trung điểm của AD
⇒AI=DI=CI=12AD.⇒AI=DI=CI=12AD. (Tính chất đường trung tuyến ứng với cạnh huyền).
Xét tam giác AOI và COI có
OI chung
OA = OC
AI = CI
⇒ΔAOI=ΔCOI(c−c−c).⇒ΔAOI=ΔCOI(c−c−c). ⇒ˆIAO=ˆICO⇒IAO^=ICO^ (hai góc tương ứng).
Mà ˆIAO=900⇒ˆICO=900IAO^=900⇒ICO^=900 hay IC ⊥⊥OC
⇒⇒IC là tiếp tuyến của nửa đường tròn tâm O.
c, Ta có AD//CH (cùng vuông góc với AB)
Trong tam giác BAI có KH // AI ⇒KHAI=BKBI⇒KHAI=BKBI (định lý Ta-lét).
Trong tam giác BDI có CK // DI ⇒CKDI=BKBI⇒CKDI=BKBI (định lý Ta-lét).
Suy ra KHAI=CKDI.KHAI=CKDI.
Mà AI = DI nên KH = CK hay K là trung điểm của CH. (điều phải chứng minh).