K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

câu a

 Gọi H là chân đường vuông góc hạ từ M xuống tia phân giác ^BAC. Tam giác ADE có AH vừa là phân giác vùa là đường cao nên cân tại A. 
Qua B vẽ BF//CE (F thuộc DE) => tam giác BDF cân tại B => BD = BF (1) 
Mặt khác xét 2 tam giác BMF và CME có : BM = CM; ^BMF = ^CME ( đối đỉnh); ^MBF = ^MCE ( so le trong) => tam giác BMF = tg CME => BF = CE (2) 
Từ (1) và (2) => đpcm

mấy câu còn lại bó tay

10 tháng 3 2017

a, Tứ giác BIHK nội tiếp (tổng hai góc đối bằng 180 0 )

b, Chứng minh AH.AK = AI.AB = 1 2 R.2R = R 2  => ĐPCM

c, MCND là hình chữ nhật => MN, AB, CD đồng quy tại I là trung điểm của CD

d, Tam giác OCA đều =>  A B C ^ = 30 0 ; M C D ^ = 60 0

Tính được CD = 2CI =  2 . 25 2 = 25cm; CM =  25 2 cm, MD =  25 3 2 cm, Sxq = 2.π.CM.MD =  625 3 2 πcm 2