K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét tứ giác AHMQ có

\(\widehat{AHM}\) và \(\widehat{AQM}\) là hai góc đối

\(\widehat{AHM}+\widehat{AQM}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: AHMQ là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

nên A,H,M,Q cùng nằm trên một đường tròn(đpcm)

b) Ta có: AHMQ là tứ giác nội tiếp(cmt)

nên \(\widehat{QAH}+\widehat{QMH}=180^0\)(Định lí tứ giác nội tiếp)

\(\Leftrightarrow\widehat{QAB}+\widehat{QMN}=180^0\)

mà \(\widehat{QAB}+\widehat{NAB}=180^0\)(hai góc kề bù)

nên \(\widehat{QMN}=\widehat{NAB}\)(1)

Xét (O) có

\(\widehat{NAB}\) là góc nội tiếp chắn \(\stackrel\frown{NB}\)

\(\widehat{BMN}\) là góc nội tiếp chắn \(\stackrel\frown{NB}\)

Do đó: \(\widehat{NAB}=\widehat{BMN}\)(Hệ quả góc nội tiếp)(2)

Từ (1) và (2) suy ra \(\widehat{QMN}=\widehat{BMN}\)

mà tia MN nằm giữa hai tia MQ và MB

nên MN là tia phân giác của \(\widehat{QMB}\)(đpcm)

25 tháng 2 2017

B O A C D K H E

a, Xét tứ giác AKCH có: \(\widehat{AKC}+\widehat{AHC}=90+90=180\)=> tứ gác AKCH nội tiếp

b,Tứ giác AKCH nội tiếp => \(\widehat{HCK}=\widehat{HAD}\)(góc trong và góc ngoài đỉnh đối diện)

Mặt khác: \(\widehat{HAD}=\widehat{BCD}=\frac{1}{2}sđ\widebat{BD}\)

=> \(\widehat{BCD}=\widehat{ACD}\)=> CD là phân giác \(\widehat{KCB}\)

c,  Tứ giác AKCH nội tiếp: => \(\widehat{CKE}=\widehat{CAH}\)

Mà: \(\widehat{CDB}=\widehat{CAH}=\frac{1}{2}sđ\widebat{BC}\)

=> \(\widehat{CKE}=\widehat{CDE}\)=> tứ giác CKDE nội tiếp

=> \(\widehat{CKD}+\widehat{CED}=180\Rightarrow\widehat{CED}=180-\widehat{CKD}=180-90=90\)

=> \(CE⊥BD\)(ĐPCM)

d, em xem lại xem có gõ sai đề không nhé

16 tháng 8 2018

Câu d) Khi C di chuyển trên cung nhỏ̉ AB. Xác định vị trí C để CK.AD+CE.DB có giá trị lớn nhất. 

Nhờ mọi người giải dùm e với.

2 tháng 1 2019

bn hãy trả lời thật zui zẻ nghen

2 tháng 1 2019

what?

24 tháng 12 2023

a: Xét (O) có

ΔAMB nội tiếp

AB là đường kính

Do đó: ΔAMB vuông tại M

=>AM\(\perp\)PB tại M

Xét tứ giác PKAM có \(\widehat{PKA}+\widehat{PMA}=90^0+90^0=180^0\)

nên PKAM là tứ giác nội tiếp

=>P,K,A,M cùng thuộc một đường tròn

b: Ta có: ΔOMN cân tại O

mà OA là đường cao

nên OA là đường trung trực của MN

=>BA là đường trung trực của MN

=>BM=BN

=>ΔBMN cân tại B

Ta có: ΔBMN cân tại B

mà BK\(\perp\)MN

nên BK là phân giác của góc MBN

=>BK là phân giác của \(\widehat{MBN}\)