K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
30 tháng 9 2021

Lời giải:

a.

$OB=OC$ nên tam giác $OBC$ cân

Do đó đường cao $OH$ đồng thời là trung tuyến hay $H$ là trung điểm $BC$

$\Rightarrow BH=4$ (cm)

Do $BA$ là tiếp tuyến $(O)\Rightarrow BA\perp BO$

Áp dụng HTL trong tam giác vuông với tam giác $ABO$:

$\frac{1}{AB^2}+\frac{1}{BO^2}=\frac{1}{BH^2}$

$\frac{1}{AB^2}+\frac{1}{5^2}=\frac{1}{4^2}$

$\Rightarrow AB=\frac{20}{3}$ (cm)

$AO=\sqrt{AB^2+BO^2}=\sqrt{(\frac{20}{3})^2+5^2}=\frac{25}{3}$ (cm)

b.

Vì $AO$ cắt $BC$ tại trung điểm $H$ của $BC$ và $AO\perp BC$ nên $AO$ là đường trung trực của $BC$

$\Rightarrow AC=AB$. Mà $OB=OC$ nên:

Do đó $\triangle ACO=\triangle ABO$ (c.c.c)

$\Rightarrow \widehat{ACO}=\widehat{ABO}=90^0$

$\Rightarrow AC\perp CO$ nên $AC$ là tiếp tuyến $(O)$

$AC=AB=\frac{20}{3}$ (cm)

AH
Akai Haruma
Giáo viên
30 tháng 9 2021

Hình vẽ:

17 tháng 12 2021

a: \(AB=3\sqrt{3}\left(cm\right)\)

13 tháng 12 2023

f

a: góc KOA+góc BOA=90 độ

góc KAO+góc COA=90 độ

mà góc BOA=góc COA

nên góc KOA=góc KAO

=>ΔKAO cân tại K

b: Xét ΔOBA vuông tại B có sin BAO=OB/OA=1/2

nên góc BAO=30 độ

=>góc BOA=60 độ

Xét ΔOBI có OB=OI và góc BOI=60 độ

nên ΔOBI đều

=>OI=OB=1/2OA=R

=>I là trung điểm của OA

ΔKAO cân tại K

mà KI là trung tuyến

nên KI vuông góc với OI

=>KI là tiếp tuyến của (O)

Giải giúp mình các bài này với ạ!1) Từ điểm A nằm ngoài đường tròn tâm O, vẽ tiếp tuyến AB (B là tiếp điểm). Lấy điểm C thuộc đường tròn tâm (O) khác điểm B sao cho AB = ACa. CM : Tam giác OAB = tam giác OACb. CM : AC là tiếp tuyến của đường tròn tâm Oc. Gọi I là giao điểm của OA và BC. Tính AB biết bán kính (R) = 5cm, BC = 8cm2) Lấy 2 điểm A và B thuộc đường tròn tâm O (3 điểm A, B, O không...
Đọc tiếp

Giải giúp mình các bài này với ạ!

1) Từ điểm A nằm ngoài đường tròn tâm O, vẽ tiếp tuyến AB (B là tiếp điểm). Lấy điểm C thuộc đường tròn tâm (O) khác điểm B sao cho AB = AC
a. CM : Tam giác OAB = tam giác OAC
b. CM : AC là tiếp tuyến của đường tròn tâm O
c. Gọi I là giao điểm của OA và BC. Tính AB biết bán kính (R) = 5cm, BC = 8cm

2) Lấy 2 điểm A và B thuộc đường tròn tâm O (3 điểm A, B, O không thẳng hàng). Tiếp tuyến của O tại A cắt tia phân giác của góc AOB tại C.
a. So sánh tam giác OAC và tam giác OBC.
b. CM : BC là tiếp tuyến của đường tròn tâm O

3) Cho đường tròn tâm O, bán kính R. Lấy điểm A cách O một khoảng = 2R. Từ A vẽ 2 tiếp tuyến AB, AC (B,C là tiếp điểm). OA cắt đường tròn tâm O tại I. Đường thẳng qua O và vuông góc với OB cắt AC tại K.
a. CM : OK // AB
b. CM : tam giác OAK là tam giác cân
c. CM : KI là tiếp tuyến của đường tròn tâm O.

0