Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Vì A,B,D,C cùng nằm trên (O)
nên ABDC nội tiếp
b: Xét (D) có
MB,MF là tiếp tuyến
=>MB=MF
Xét (D) có
NF,NC là tiếp tuyến
=>NF=NC
=>MB+CN=MF+NF=MN
Xét (O):
CD là đường kính (gt).
\(M\in\left(O\right)\left(gt\right).\)
\(\Rightarrow\widehat{CMD}=90^o.\\ hay\widehat{CMF}=90^o.\)
Xét tứ giác CKFM:
\(\widehat{CMF}=90^o\left(cmt\right);\widehat{CKF}=90^o\left(CK\perp KF\right).\\ \Rightarrow\widehat{CMF}+\widehat{CKF}=180^o.\)
Mà góc ở vị trí đối nhau.
\(\Rightarrow\) Tứ giác CKFM nội tiếp đường tròn (dhnb).
Xét (O):
CD là đường kính (gt).
\(A\in\left(O\right)\left(gt\right).\)
\(\Rightarrow\widehat{CAD}=90^o.\)
Xét \(\Delta CAD\) vuông tại A, AK là đường cao:
\(AD^{\text{2}}=DK.DC\) (Hệ thức lượng). (1)
Xét \(\Delta DKF\) và \(\Delta DMC:\)
\(\widehat{DKF}=\widehat{DMC}\left(=90^o\right).\)
\(\widehat{KDF}chung.\)
\(\Rightarrow\) \(\Delta DKF\) \(\sim\) \(\Delta DMC\left(g-g\right).\)
\(\Rightarrow\dfrac{DK}{DM}=\dfrac{DF}{DC}\) (2 cạnh tương ứng).
\(\Rightarrow DK.DC=DF.DM.\) (2).
Từ (1) và (2). \(\Rightarrow DF.DM=AD^{\text{2}}.\)
a: A,B,D,C cùng thuộc (O)
=>ABDC nọi tiép
b: AB vuông góc BD
=>AB là tiếp tuyến của (D)
AC vuông góc CD
=>AC là tiếp tuyến của (D)
MB,MF là tiêp tuyến của (D) nên MB=MF
NF,NC là tiếp tuyến của (D) nên NF=NC
=>BM+NC=MF+NF=MN
a: Xét (O) có
ΔAMB nội tiếp
AB là đường kính
=>ΔAMB vuông tại M
Xét tứ giác BMIJ có
góc IJB+góc IMB=180 độ
=>BMIJ là tứ giác nội tiếp
b: BMIJ là tứgiác nội tiếp
=>góc MJI=góc MBI
Xét tứ giác CAJI có
góc ACI+góc AJI=180 độ
=>CAJI là tứ giác nội tiêp
=>góc CJI=góc CAI
góc MJI=góc MBI
mà góc CAI=góc MBI
nên góc CJI=góc MJI
=>JI là phân giác của góc CJM
a: Xét (O) có
ΔAHM nội tiếp
AH là đường kính
Do đó: ΔAHM vuông tại M
=>HM\(\perp\)AC tại M
Xét (O) có
ΔADH nội tiếp
AH là đường kính
Do đó:ΔADH vuông tại D
=>HD\(\perp\)AB tại D
Xét ΔHAB vuông tại H có HD là đường cao
nên \(AD\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HM là đường cao
nên \(AM\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AD\cdot AB=AM\cdot AC\)
=>AD/AC=AM/AB
Xét ΔAMD và ΔABC có
AM/AB=AD/AC
góc MAD chung
Do đó: ΔAMD đồng dạng với ΔABC
=>\(\widehat{AMD}=\widehat{ABC}\)
mà \(\widehat{AMD}+\widehat{DMC}=180^0\)(hai góc kề bù)
nên \(\widehat{DMC}+\widehat{DBC}=180^0\)
=>DMCB là tứ giác nội tiếp
a: góc ADB=1/2*180=90 độ
góc EOB+góc EDB=180 độ
=>EOBD nội tiếp
b: Xét ΔACE và ΔADC có
góc ACE=góc ADC
góc CAE chung
=>ΔACE đồng dạng với ΔADC
=>AC^2=AE*AD
c: góc EIB=góc EDB=90 độ
=>EIDB nội tiếp
=>góc IED=góc IBD; góc IDE=góc IBE
góc IBE+góc OBE=góc IBO=45 độ
ΔEAB cân tại E
=>góc EAB=góc EBA
=>góc IBE+góc EAB=45 độ
góc IDE=góc IBE
=>góc IDE+1/2*sđ cung BD=45 độ
1/2*sđ cung BC=1/2*sđ cung CD+1/2*sđ cung DB
=>góc IED+1/2*sđ cung BD=45 độ
=>góc IDE=góc IED
=>ID=IE
góc ICE=45 độ; góc EIC=90 độ
=>ΔEIC vuôngcân tại I
=>IE=IC=ID
=>ĐPCM
a: góc CMD=1/2*180=90 độ
góc CMF+góc CKF=180 độ
=>CKFM nội tiếp
b: Xét ΔDAF và ΔDMA có
góc DAF=góc DMA
góc ADF chung
=>ΔDAF đồng dạngvới ΔDMA
=>DA/DM=DF/DA
=>DA^2=DM*DF