K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 6 2017

Góc tạo bởi tiếp tuyến và dây cung

Vì tổng các góc trong tứ giác bằng \(360^0\)\(\widehat{CBE}+\widehat{EFC}=180^0\) nên suy ra \(\widehat{BCF}+\widehat{BEF}=180^0\)

23 tháng 2 2019

.

NV
2 tháng 4 2023

a.

\(DH\perp AB\left(gt\right)\Rightarrow\widehat{DHB}=90^0\Rightarrow D;H;B\) cùng thuộc đường tròn đường kính DB

\(\widehat{AEB}=90^0\) (góc nội tiếp chắn nửa đường tròn (O)) \(\Rightarrow\widehat{DEB}=90^0\)

\(\Rightarrow D;E;B\) cùng thuộc đường tròn đường kính DB

\(\Rightarrow\) Tứ giác BHDE nội tiếp đường tròn đường kính DB

b.

\(\widehat{ACB}=90^0\) (góc nội tiếp chắn nửa đường tròn (O))

\(\Rightarrow\widehat{ACH}=\widehat{ABC}\) (cùng phụ \(\widehat{BAC}\))

Mà \(\widehat{ABC}=\widehat{AEC}\) (cùng chắn cung AC của (O)

\(\Rightarrow\widehat{ACH}=\widehat{AEC}\)

Xét hai tam giác ADC và ACE có: \(\left\{{}\begin{matrix}\widehat{ACH}=\widehat{AEC}\left(cmt\right)\\\widehat{CAD}\text{ chung}\end{matrix}\right.\)

\(\Rightarrow\Delta ADC\sim\Delta ACE\left(g.g\right)\Rightarrow\dfrac{AD}{AC}=\dfrac{CD}{EC}\Rightarrow AD.EC=CD.AC\)

c.

Cũng theo cmt \(\Delta ADC\sim\Delta ACE\Rightarrow\dfrac{AC}{AE}=\dfrac{AD}{AC}\Rightarrow AD.AE=AC^2\)

Áp dụng hệ thức lượng trong tam giác vuông ABC với đường cao CH:

\(BC^2=BH.BA\)

\(\Rightarrow AD.AE+BH.BA=AC^2+BC^2=AB^2=2022^2\)

NV
2 tháng 4 2023

loading...

25 tháng 4 2016

o A B M C D I

a. Do I là trung điểm dây cung BC nên ta có \(\widehat{OIC}=90^0\). Xét tứ giác MOCI có \(\widehat{CMO}+\widehat{CIO} =90^0+90^0=180^0\)  nên tứ giác MOIC là tứ giác nội tiếp đường tròn đường kính CO.

b. Do D là điểm chính giữa cung AB nên \(DO \perp AB\), mà  \(CM \perp AB\)  nên \(DO \parallel CM\). Từ đó dễ thấy \(dtCMD=dtCMO\).

\(\frac{1}{2}CM.MO\le\frac{1}{2}\frac{CM^2+OM^2}{2}=\frac{1}{4}OC^2=\frac{R^2}{4}\)

Vậy diện tích tam giác MCD lớn nhất bằng \(\frac{R^2}{4}\) khi \(OM=\frac{R}{\sqrt{2}}\)

Chúc em học tốt ^^

13 tháng 11 2023

a: Xét (O) có

ΔAEB nội tiếp

AB là đường kính

Do đó: ΔAEB vuông tại E

=>BE\(\perp\)AM

Xét (O) có

ΔAFB nội tiếp

AB là đường kính

Do đó: ΔAFB vuông tại F

=>BF\(\perp\)AN

Xét ΔABM vuông tại B có BE là đường cao

nên \(AE\cdot MA=AB^2\left(1\right)\)

Xét ΔABN vuông tại B có BF là đường cao

nên \(AF\cdot AN=AB^2\)(2)

Từ (1) và (2) suy ra \(AE\cdot AM=AF\cdot AN\)

 

31 tháng 1 2019

a, Chứng minh được  H C B ^ = H K B ^ = 90 0

b,  A C K ^ = H B K ^  (CBKH nội tiếp)

Lại có:  A C M ^ = H B K ^ = 1 2 s đ A M ⏜

=>  A C M ^ = A C K ^

c, Chứng minh được:

DMCA = DECB (c.g.c) => MC = CE

Ta có:  C M B ^ = C A B ^ = 1 2 s đ C B ⏜ = 45 0

=> DMCE vuông cân tại C

d, Gọi  P B ∩ H K = I

Chứng minh được DHKB đồng dạng với DAMB (g.g)

=>  H K K B = M A M B = A P R => H K = A P . B K R

Mặt khác: ∆BIK:∆BPA(g.g) => (ĐPCM)