Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
DC = DA
OA = OC
Do đó OD là trung trực của đoạn thẳng AC : suy ra OD vuông góc với AC
Tứ giác OECH có góc CEO + góc CHO = 180 độ
Suy ra tứ giác OECH là tứ giác nội tiếp
a: Xét (O) có
ΔAMB nội tiếp
AB là đường kính
=>ΔAMB vuông tại M
Xét tứ giác BMIJ có
góc IJB+góc IMB=180 độ
=>BMIJ là tứ giác nội tiếp
b: BMIJ là tứgiác nội tiếp
=>góc MJI=góc MBI
Xét tứ giác CAJI có
góc ACI+góc AJI=180 độ
=>CAJI là tứ giác nội tiêp
=>góc CJI=góc CAI
góc MJI=góc MBI
mà góc CAI=góc MBI
nên góc CJI=góc MJI
=>JI là phân giác của góc CJM
1.\(\Delta OMH\perp H\) ( không đổi )
\(\Rightarrow\widehat{OMH}+\widehat{HOM}=90^o\)
Ta có: I là tâm đường tròn nội tiếp \(\Delta OMH\)
\(\Rightarrow\widehat{OMI}=\widehat{HMI}=\dfrac{\widehat{OMH}}{2}\)
\(\Rightarrow\widehat{MOI}=\widehat{HOI}=\dfrac{\widehat{MOH}}{2}\)
\(\Delta OIM\) có: \(\widehat{OIM}=180^o-\left(\widehat{OMI}+\widehat{MOI}\right)\)
\(\Leftrightarrow\) \(\widehat{OIM}=180^o-\left(\dfrac{\widehat{OMH}}{2}+\dfrac{\widehat{MOH}}{2}\right)\)
\(\Leftrightarrow\widehat{OIM}=180^o-\dfrac{90^o}{2}=135^o\)
Xét \(\Delta OIB\) và \(\Delta OIM\), có:
\(OB=OM\left(=R\right)\)
\(\widehat{MOI}=\widehat{BOI}\) ( OI là tia phân giác \(\widehat{MOH}\) )
`OI`: chung
Vậy\(\Delta OIB\) = \(\Delta OIM\) ( c.g.c )
\(\Rightarrow\widehat{OIB}=\widehat{OIM}\) ( 2 góc tương ứng )
\(\Rightarrow\widehat{OIB}=135^o\) ( không đổi )
2. \(\Delta OMH\perp H\)
\(\Rightarrow S_{OMH}=\dfrac{1}{2}.OH.MH\)
Áp dụng BĐT AM-GM, ta có:
\(\sqrt{OH^2.MH^2}\le\dfrac{OH^2+MH^2}{2}\)
\(\Leftrightarrow\dfrac{1}{2}.OH.MH\le\dfrac{1}{2}.\dfrac{OH^2+MH^2}{2}\)
\(\Leftrightarrow\dfrac{1}{2}.OH.MH\le\dfrac{1}{2}.\dfrac{OM^2}{4}\) ( pytago )
\(\Leftrightarrow S_{OMH}\le\dfrac{R^2}{4}\)
\(\rightarrow\)\(S_{OMH}\) lớn nhất là \(\dfrac{R^2}{4}\) không đổi
Dấu "=" xảy ra khi:
\(OH^2=MH^2\)
\(\Rightarrow OH=MH\)
\(\Rightarrow\Delta OMH\) vuông cân tại `H` \(\Rightarrow\widehat{MOH}=\widehat{OMH}=45^o=\widehat{MOC}\)
\(\Rightarrow\)`M` nằm giữa của \(\stackrel\frown{AB}\) thì \(S_{OMH}\) đạt GTNN là \(\dfrac{R^2}{4}\)
Vì tổng các góc trong tứ giác bằng \(360^0\) mà \(\widehat{CBE}+\widehat{EFC}=180^0\) nên suy ra \(\widehat{BCF}+\widehat{BEF}=180^0\)