K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2023

a: Xét (O) có

CD,CB là các tiếp tuyến

Do đó: CD=CB

=>C nằm trên đường trung trực của DB(1)

Ta có: OD=OB

=>O nằm trên đường trung trực của DB(2)

Từ (1) và (2) suy ra OC là đường trung trực của BD

=>OC\(\perp\)BD

b: Xét tứ giác OBCD có

\(\widehat{OBC}+\widehat{ODC}=90^0+90^0=180^0\)

=>OBCD là tứ giác nội tiếp

=>O,B,C,D cùng thuộc một đường tròn

c: Xét (O) có

\(\widehat{CDM}\) là góc tạo bởi tiếp tuyến DC và dây cung DM

\(\widehat{DAM}\) là góc nội tiếp chắn cung DM

Do đó: \(\widehat{CDM}=\widehat{DAM}\)

=>\(\widehat{CDM}=\widehat{CAD}\)

Xét ΔCDM và ΔCAD có

\(\widehat{CDM}=\widehat{CAD}\)

\(\widehat{DCM}\) chung

Do đó: ΔCDM đồng dạng với ΔCAD

=>\(\widehat{CMD}=\widehat{CDA}\)

a: Xét ΔCMD và ΔCDA có

góc MCD chung

góc CDM=góc CAD

Do đo: ΔCMD đồng dạng với ΔCDA

=>góc CMD=góc CDA

30 tháng 11 2021

2: Xét tứ giác OBCD có 

\(\widehat{OBC}+\widehat{ODC}=180^0\)

Do đó: OBCD là tứ giác nội tiếp

hay O,B,C,D cùng thuộc một đường tròn

NV
17 tháng 1

a.

Do AD là tiếp tuyến tại A \(\Rightarrow\widehat{OAD}=90^0\)

\(\Rightarrow\) 3 điểm O, A, D thuộc đường tròn đường kính OD (1)

BD là tiếp tuyến tại B \(\Rightarrow\widehat{OBD}=90^0\)

\(\Rightarrow\) 3 điểm O, B, D thuộc đường tròn đường kính OD (2)

(1);(2) \(\Rightarrow\) 4 điểm A, D, B, O cùng thuộc đường tròn đường kính OD

b.

Do D là giao điểm 2 tiếp tuyến tại A và B, theo t/c hai tiếp tuyến cắt nhau

\(\Rightarrow DA=DB\)

Mà \(OA=OB=R\)

\(\Rightarrow OD\) là trung trực của AB \(\Rightarrow OD\perp AB\) (3)

BC là đường kính và A thuộc đường tròn nên \(\widehat{BAC}\) là góc nt chắn nửa đường tròn

\(\Rightarrow\widehat{BAC}=90^0\Rightarrow BA\perp CA\) (4)

(3);(4) \(\Rightarrow OD||CA\) (cùng vuông góc AB) hay \(OD||CE\)

Áp dụng hệ thức lượng trong tam giác vuông BCE với đường cao BA ứng với cạnh huyền:

\(BC^2=CA.CE\Rightarrow\left(2R\right)^2=CA.CE\)

\(\Rightarrow CA.CE=4R^2\)

NV
17 tháng 1

Em kiểm tra lại đề bài, đoạn này là sao nhỉ: "Tiếp tuyến tại 4 của (O) "

a: Xét tứ giác ADBO có

\(\widehat{DBO}+\widehat{DAO}=90^0+90^0=180^0\)

=>ADBO là tứ giác nội tiếp

=>A,D,B,O cùng thuộc một đường tròn

b: Xét (O) có

ΔBAC nội tiếp

BC là đường kính

Do đó: ΔBAC vuông tại A

=>BA\(\perp\)AC tại A

=>BA\(\perp\)CE tại A

Xét (O) có

DA,DB là các tiếp tuyến

DO đó: DA=DB

=>D nằm trên đường trung trực của AB(1)

ta có: OA=OB

=>O nằm trên đường trung trực của AB(2)

Từ (1),(2) suy ra OD là đường trung trực của AB

=>OD\(\perp\)AB

Ta có: OD\(\perp\)AB

CE\(\perp\)AB

Do đó: OD//CE

Xét ΔEBC vuông tại B có BA là đường cao

nên \(CA\cdot CE=CB^2\)

=>\(CA\cdot CE=\left(2R\right)^2=4R^2\)

17 tháng 12 2021

a: Xét tứ giác OBME có 

\(\widehat{OBM}+\widehat{OEM}=180^0\)

Do đó: OBME là tứ giác nội tiếp

30 tháng 12 2021

a: Xét tứ giác OBMC có 

\(\widehat{OBM}+\widehat{OCM}=180^0\)

Do đó: OBMC là tứ giác nội tiếp