K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 2 2019

Đề kiểm tra Toán 9 | Đề thi Toán 9

a) Chứng minh H là trung điểm của AB

Ta có OM vuông góc AB tại H (gt)

Vậy H là trung điểm của AB (đường kính vuông góc với một dây cung)

Chứng minh tam giác OAM đều:

Ta có: AM = AO (A là trung trực của OM)

và OA = OM = R

Suy ra AM = AO = OM

Vậy ΔOAM đều.

6 tháng 8 2018

Đề kiểm tra Toán 9 | Đề thi Toán 9

b) Chứng minh tứ giác OAMB là hình thoi.

Do H là trung điểm của AB (cmt)

H là trung điểm của OM

nên tứ giác OAMB là hình bình hành mà OM vuông góc AB.

Vậy tứ giác OAMB là hình thoi.

11 tháng 2 2018

Đề kiểm tra Toán 9 | Đề thi Toán 9

d) Ta có: CA ⊥ OA (CA là tiếp tuyến của (O)

và ON ⊥ OA (gt)

⇒ CA // ON ⇒ ∠(CON) = ∠(ACO) (sole trong)

Mà ∠(ACO) = ∠(BCO) (ΔOAC = ΔOBC)

⇒ ∠(CON) = ∠(BCO) ⇒ ΔNCO cân tại N

Xét tam giác CAO vuông tại A có ∠(AOC) = 60o( ΔAMO đều) nên:

Đề kiểm tra Toán 9 | Đề thi Toán 9

⇒ M là trung điểm của OC

ΔNCO cân tại N có NM là trung tuyến ⇒ NM cũng là đường cao

Hay NM là tiếp tuyến của (O)

22 tháng 9 2019

Đề kiểm tra Toán 9 | Đề thi Toán 9

c) Xét ΔOAC và ΔOBC có:

OA = OB = R

∠(AOC) = ∠(BOC) (tính chất đường chéo hình thoi)

OC là cạnh chung

⇒ ΔOAC = ΔOBC (c.g.c)

⇒ AC = BC

5 tháng 4 2020

a) zì H là trung điểm của AB nên \(OH\perp AB\)hay \(\widehat{OHM}=90^0\)

theo tính chất của tiếp tuyến ta lại có \(OD\perp DM\left(hay\right)\widehat{ODM}=90^0\)

=> M,D,O,H cùng nằm trên 1đường tròn

b) Theo tính chất tiếp tuyến ta có

MC=MD=> tam giác MDC cân tại M

=> MI là 1 đương phân giác của CMD , MẶt khác I là điểm chính giữa cung nhỏ CD nên :

\(\widehat{DCI}=\frac{1}{2}sđ\widebat{DI}=\frac{1}{2}sđ\widebat{CI}=\widehat{MCI}\)

=> CI là phân giác của góc MCD . 

zậy I là tâm  đường tròn nội tiếp tam giác MCD

16 tháng 6 2018

Đề kiểm tra Toán 9 | Đề thi Toán 9

d) Ta có:

K là trung điểm của CE (E đối xứng với C qua AB)

K là trung điểm của AB

AB ⊥ CE (MO ⊥ AB)

⇒ Tứ giác AEBC là hình thoi

⇒ BE // AC

Mà AC ⊥ AD (A thuộc đường tròn đường kính CD)

Nên BE ⊥ AD và DK ⊥ AB

Vậy E là trực tâm của tam giác ADB