K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 11 2021

O A B C N M I

a) Do AB là tiếp tuyến của (O) (GT) => OB vuông góc với AB (ĐL)

Mà OB vuông góc với ON (GT) => AB // ON (từ vuông góc -> //) hay AM // ON

Cm tương tự => AN // OM

Do 2 tiếp tuyến AB và AC cắt nhau tại A (GT) =>  OA phân giác góc BAC (t/c tiếp tuyến) hay OA phân giác góc MAN

Xét tứ giác AMON có: AM // ON, AN // OM, OA phân giác góc MAN (cmt) => AMON là hình thoi (dhnb)

b) Đặt I là trung điểm OA => OI = OA/2 = 2R/2 = R hay OI là bán kính của (O)

Do AMON là hình thoi (cmt) => OA vuông góc với MN tại I (t/c) hay OI vuông góc với MN tại I

Mà OI là bán kính của (O) => MN là tiếp tuyến của (O) (định lý)

c)  Xét tam giác OAB có OA vuông góc với AB (cmt) \(\Rightarrow\sin OAB=\frac{OB}{AB}=\frac{1}{2}\)  => góc OAB = 30=> góc ION = 30o (so le)

Xét hình thoi AMON có OA cắt MN tại I (cmt) => I là trung điểm MN (t/c) hay IN = IM = MN/2

Xét tam giác ION có góc OIN = 90o, góc ION = 30o(cmt) \(\Rightarrow OI=IN.\cos ION=\frac{MN}{2}.\cos30^o\Rightarrow MN=\frac{4.OI}{\sqrt{3}}=\frac{4R}{\sqrt{3}}\)

\(S_{AMON}=\frac{1}{2}.OA.MN=\frac{1}{2}.2R.\frac{4R}{\sqrt{3}}=\frac{4R^2}{\sqrt{3}}\)

31 tháng 12 2023

a.

24 tháng 10 2017

mk ko bt 123

24 tháng 10 2017

123 làm được rồi help mình câu 4

27 tháng 12 2018

a) Ta có △AOC vuông tại C\(\Rightarrow sin_{CAO}=\dfrac{OC}{OA}=\dfrac{R}{2R}=\dfrac{1}{2}\Rightarrow\widehat{CAO}=30^0\)

Mà A là giao điểm của 2 tiếp tuyến của (O)

\(\Rightarrow\widehat{BAC}=2.\widehat{OAC}=2.30^0=60^0\)(1)

Và AB=AC(2)

Từ (1),(2)\(\Rightarrow\)△ABC đều

b) Ta có OD⊥OB

AB⊥OB

Suy ra OD//AB\(\Rightarrow\)OD//AE(3)

Chứng minh tương tự: OE//AD(4)

Tự (3),(4)\(\Rightarrow\)ADOE là hình bình hành

Ta có △AOC vuông tại C \(\Rightarrow\widehat{OAB}+\widehat{AOB}=90^0\Rightarrow\widehat{AOB}=90^0-\widehat{OAB}=90^0-30^0=60^0\)Ta lại có \(\widehat{DOB}=90^0\Rightarrow\widehat{DOA}+\widehat{AOB}=90^0\Leftrightarrow\widehat{DOA}+60^0=90^0\Rightarrow\widehat{DOA}=30^0\)

\(\Rightarrow\widehat{OAD}=\widehat{DOA}=30^0\)\(\Rightarrow\)△DOA cân tại D\(\Rightarrow AD=DO\)

Mà ADOE là hình bình hành

Vậy ADOE là hình thoi

c) Ta gọi H là giao điểm hai đường chéo OA và DE của hình thoi ADOE\(\Rightarrow OH=HA=\dfrac{OA}{2}=\dfrac{2R}{2}=R\)\(\Rightarrow\)H nằm trên đường tròn (O)

Và AO⊥DE\(\Rightarrow\widehat{OHD}=90^0\)

Vậy DE là tiếp tuyến của đường tròn (O) tại H