K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: góc ABO+góc ACO=90+90=180 độ

=>ABOC nội tiếp đường tròn đường kính OA

Tâm là trung điểm của OA

Bán kính là OA/2

b: Xét (O) có

AB,AC là tiếp tuyến

=>AB=AC
mà OB=OC

nên OA là trung trực của BC

=>AO vuông góc BC

c: Xét ΔAMB và ΔABN có

góc AMB=góc ABN

góc MAB chung

=>ΔAMB đồng dạng với ΔABN

=>AM/AB=AB/AN

=>AB^2=AM*AN=AH*AO

21 tháng 12 2022

a: Xét tứ giác ABOC có

góc OBA+góc OCA=180 độ

nên OBAC là tứ giác nội tiếp

Xét (O) có

AB,AC là các tiếp tuyến

nên AB=AC

mà OB=OC

nên OA là trung trực của BC

b: Xét ΔABE và ΔADB có

góc ABE=góc ADB

góc BAE chung

Do đó: ΔABE đồng dạng với ΔADB

=>AB/AD=AE/AB

=>AB^2=AD*AE=AH*AO

3 tháng 5 2023

ko bít

a: Xét tứ giác ABOC có

góc OBA+góc OCA=180 độ

nên OBAC là tứ giác nội tiếp

b: Xét (O) có

AB,AC là tiếp tuyến

nên AB=AC

mà OB=OC

nên OA là trung trực của BC

=>OA vuông góc với BC

 

a) xét tứ giác ABOC có

\(\widehat{ABO}=\widehat{ACO}=90^0\)(tiếp tuyến AB,AC)

=> tứ giác ABOC nội tiếp

b) Xét tam giác  ABH zà tam giác AOB có

\(\hept{\begin{cases}\widehat{ABO}chung\\\widehat{BHA}=\widehat{OBA}=90^0\left(BC\perp CA\left(tựCM\right)\right)\end{cases}}\)

=> \(\Delta ABH~\Delta AOB\left(g.g\right)\)

\(=>\frac{AB}{AO}=\frac{AH}{AB}=>AH.AB=AB.AB\left(1\right)\)

xét tam giác ABD zà tam giác AEB có

\(\widehat{BAE}chung\)

\(\widehat{ABD}=\widehat{BEA}\)(cùng chắn \(\widebat{BD}\))

=> \(\Delta ABD~\Delta AEB\left(g.g\right)\)

\(=>\frac{AB}{AE}=\frac{AD}{AB}=>AE.AD=AB.AB\left(2\right)\)

từ 1 zà 2 suy ra

AH.AO=AE.AD(dpcm)

=>\(\Delta ADH~\Delta AOE\)

\(=>\widehat{DEO}=\widehat{DHA}\)(2 góc tương ứng

lại có 

\(\widehat{DHA}+\widehat{DHO}=180^0=>\widehat{DEO}+\widehat{DHO}=180^0\)

=> tứ giác DEOH nội tiếp

c)  Có tam giá AOM zuông tại O , OB là đường cao

\(=>\frac{1}{OA^2}+\frac{1}{OM^2}=\frac{1}{OB^2}=\frac{1}{R^2}\)

\(\frac{1}{OA.OM}=\frac{1}{OA}.\frac{1}{OM}\le\frac{1}{\frac{OA^2+OM^2}{2}}=\frac{1}{\frac{R^2}{2}}=\frac{1}{2R^2}\left(a,b\le\frac{a^2+b^2}{2}\right)\)

=>\(OA.OM\ge2R^2=>MinS_{AMN}=2R^2\)

dấu = xảy ra khi OA=OM

=> tam giác OAM zuông cận tại O

=> góc A = độ

bài 2 

ra kết quả là \(6\pi m^2\)

nếu cần giải bảo mình 

2 tháng 2 2018

a) Hai tam giác vuông ABO và ACO có chung cạnh huyền AO nên A, B, O, C cùng thuộc đường tròn đường kính AO.

Vậy tứ giác ABOC là tứ giác nội tiếp.

b) Ta thấy ngay \(\Delta ABD\sim\Delta AEB\left(g-g\right)\)

\(\Rightarrow\frac{AB}{AE}=\frac{AD}{AB}\Rightarrow AE.AD=AB^2\)

Xét tam giác vuông ABO có BH là đường cao nên áp dụng hệ thức lượng ta có:

\(AH.AO=AB^2\)

Suy ra AD.AE = AH.AO

c) Ta có \(\widehat{PIK}+\widehat{IKQ}+\widehat{P}+\widehat{Q}=360^o\)

\(\Rightarrow2\left(\widehat{PIO}+\widehat{P}+\widehat{OKQ}\right)=360^o\)

\(\Rightarrow\widehat{PIO}+\widehat{P}+\widehat{OKQ}=180^o\)

Mặt khác \(\widehat{PIO}+\widehat{P}+\widehat{IOP}=180^o\)

\(\Rightarrow\widehat{IOP}=\widehat{OKQ}\Rightarrow\Delta PIO\sim\Delta QOK\)

\(\Rightarrow\frac{IP}{PO}=\frac{OQ}{KQ}\Rightarrow PI.KQ=PO^2\)

Sử dụng bất đẳng thức Cô-si ta có:

\(IP+KQ\ge2\sqrt{IP.KQ}=2\sqrt{OP^2}=PQ\)

26 tháng 8 2020

acje cho hỏi 2 tam giác đồng dạng ở câu b là góc nào í chỉ ro rõ cho e với ạk