K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 2 2020

A B C Q M x O I N H

17 tháng 2 2020

a) Dễ thấy: góc MQA=90độ

MA, MC là 2 tiếp tuyến nên MO vuông góc với AC hay góc MIA=90 độ

suy ra AIQM là tứ giác nội tiếp

b) AIQM là tứ giác nội tiếp nên: góc IMQ = góc QAI

mà góc QAI = góc QBC nên góc IMQ = góc QBC 

Hay OM // BC

24 tháng 12 2023

a: ta có: ON\(\perp\)OB

AB\(\perp\)OB

Do đó: ON//AB

=>ON//AM

Ta có: OM\(\perp\)OC

AC\(\perp\)OC

Do đó: OM//AC

=>OM//AN

Xét tứ giác OMAN có

OM//AN

ON//AM

Do đó: OMAN là hình bình hành

Xét (O) có

AB,AC là các tiếp tuyến

Do đó: AO là phân giác của góc BAC

=>AO là phân giác của góc MAN

Hình bình hành OMAN có AO là phân giác của góc MAN

nên OMAN là hình thoi

b: Kẻ OH\(\perp\)MN tại H

Xét ΔOBA vuông tại B có \(sinBAO=\dfrac{OB}{OA}=\dfrac{1}{2}\)

nên \(\widehat{BAO}=30^0\)

Ta có: ΔBOA vuông tại B

=>\(\widehat{BOA}+\widehat{BAO}=90^0\)

=>\(\widehat{BOA}=60^0\)

Xét (O) có

AB,AC là các tiếp tuyến

Do đó: OA là phân giác của góc BOC

=>\(\widehat{BOC}=2\cdot\widehat{BOA}=120^0\)

Ta có: \(\widehat{BOM}+\widehat{COM}=\widehat{BOC}\)

=>\(\widehat{BOM}=120^0-90^0=30^0\)

Xét ΔMOA có MO=MA

nên ΔMOA cân tại M

=>\(\widehat{MOA}=\widehat{MAO}=30^0\)

Xét ΔOBM vuông tại B và ΔOHM vuông tại H có

OM chung

\(\widehat{BOM}=\widehat{HOM}\left(=30^0\right)\)

Do đó: ΔOBM=ΔOHM

=>OB=OH=R

Xét (O) có

OH là bán kính

MN\(\perp\)OH tại H

Do đó: MN là tiếp tuyến của (O)

 

 

17 tháng 3 2019

ae giúp tôi câu d nhá

8 tháng 6 2019

bn vô hoc 24h.vn hỏi nha 

~ Hok tốt ~
#JH