Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
AB = 10cm
BC= 12 cm
Gọi \(H=AD\) \(\Omega\) \(BC\)
Ta có AD vuông góc với BC mà ADlà đường kính
\(\Rightarrow\)AD là đường trung trực của BC
\(\Rightarrow\)H là ttrung điểm \(\Rightarrow HC=HB=\frac{1}{2}.BC=6cm\)
Tam giác ABC vuông tại H
\(\Rightarrow AH=\sqrt{AB^2-HB^2}=8cm\)
Tam giác ABD vuông tại B (chắn nửa đương tròn )
\(\Rightarrow AD=\frac{AB^2}{AH}=\frac{10^2}{8}=12,5cm\)
\(\Rightarrow R=\frac{1}{2}.AD=6,25cm\)
Vậy bán kính của đườn tròn là : \(6,25cm\)
Chúc bạn học tốt !!!
a) Vì R=65cm
nên \(BC=2\cdot R=2\cdot65=130\left(cm\right)\)
Xét (O) có
ΔBAC nội tiếp đường tròn(B,A,C\(\in\)(O))
BC là đường kính
Do đó: ΔBAC vuông tại A(Định lí)
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow AC^2=BC^2-AB^2=130^2-126^2=1024\)
hay AC=32(cm)
Vậy: AC=32cm