Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Chú ý: A M O ^ = A I O ^ = A N O ^ = 90 0
b, A M B ^ = M C B ^ = 1 2 s đ M B ⏜
=> DAMB ~ DACM (g.g)
=> Đpcm
c, AMIN nội tiếp => A M N ^ = A I N ^
BE//AM => A M N ^ = B E N ^
=> B E N ^ = A I N ^ => Tứ giác BEIN nội tiếp => B I E ^ = B N M ^
Chứng minh được: B I E ^ = B C M ^ => IE//CM
d, G là trọng tâm DMBC Þ G Î MI
Gọi K là trung điểm AO Þ MK = IK = 1 2 AO
Từ G kẻ GG'//IK (G' Î MK)
=> G G ' I K = M G M I = M G ' M K = 2 3 I K = 1 3 A O không đổi (1)
MG' = 2 3 MK => G' cố định (2). Từ (1) và (2) có G thuộc (G'; 1 3 AO)
Đáp án:
Giải thích các bước giải:
Gọi G là trọng tâm của tgMBC => G trên MI và MG/IM = 2/3
Trên MN lấy điểm K sao cho MK/MN = 2/3 => Điểm K cố định và KG // NI vì MG/MI = MK/MN =2/3
=> ^MGK = ^MIN mà ^MIN không đổi (góc nội tiếp của đường tròn đk AO qua 5 điểm câu a)
=> G thuộc cung tròn cố định chứa ^MGK không đổi nhận MK là dây
Học tốt
a: ΔOBC cân tại O
mà OM là đường trung tuyến
nên OM\(\perp\)BC tại M
Xét tứ giác KAOM có
\(\widehat{OAK}+\widehat{OMK}=90^0+90^0=180^0\)
=>KAOM là tứ giác nội tiếp
=>K,A,O,M cùng thuộc một đường tròn
b: AH\(\perp\)BC
OM\(\perp\)BC
Do đó: AH//OM
Xét ΔNAH có
O là trung điểm của NA
OM//AH
Do đó: M là trung điểm của NH
Xét tứ giác BHCN có
M là trung điểm chung của BC và HN
=>BHCN là hình bình hành
c: Xét (O) có
ΔACN nội tiếp
AN là đường kính
Do đó: ΔACN vuông tại C
=>CN\(\perp\)CA
BHCN là hình bình hành
=>BH//CN
Ta có: BH//CN
CN\(\perp\)CA
Do đó: BH\(\perp\)AC
Xét ΔABC có
BH,AH là các đường cao
BH cắt AH tại H
Do đó: H là trực tâm của ΔABC