K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2023

a: Xét tứ giác AECO có

\(\widehat{EAO}+\widehat{ECO}=90^0+90^0=180^0\)

=>AECO là tứ giác nội tiếp

=>A,E,C,O cùng thuộc một đường tròn

b: Ta có: ΔOBC cân tại O

mà OF là đường trung tuyến

nên OF là tia phân giác của góc COB

Xét ΔCOF và ΔBOF có

OC=OB

\(\widehat{COF}=\widehat{BOF}\)

OF chung

Do đó: ΔOCF=ΔOBF

=>\(\widehat{OCF}=\widehat{OBF}\)

mà \(\widehat{OCF}=90^0\)

nên \(\widehat{OBF}=90^0\)

=>FB là tiếp tuyến của (O)

c: Xét (O) có

EA,EC là các tiếp tuyến

=>EA=EC

=>E nằm trên đường trung trực của AC(1)

Ta có: OA=OC

=>O nằm trên đường trung trực của AC(2)

Từ (1) và (2) suy ra OE là đường trung trực của AC

=>OE\(\perp\)AC tại H và H là trung điểm của AC

Xét ΔAEO vuông tại A có AH là đường cao

nên \(OH\cdot OE=OA^2\)

=>\(4\cdot OH\cdot OE=4\cdot OA^2=\left(2\cdot OA\right)^2=AB^2\)

24 tháng 12 2018

O A B x y C C E F D I H K

a, Theo t/c tiếp tuyến của đường tròn

 EA = EC

 FC = FB

=>  EC + CF = EA + BF

=> EF  = AE + BF

b, Xét \(\Delta\)ABC có OA = OB = OC (bán kính)

=> \(\Delta\)ABC vuông tại C

=> AC \(\perp\)BC

Xét \(\Delta\)DAB vuông tại  A có AC là đường cao

=> \(AD^2=DC.DB\)(Hệ thức lượng)

c,Chưa ra, mai nghĩ ra thì giải cho ^^

13 tháng 1 2017

(Quá lực!!!)

E N A B C D O H L

Đầu tiên, hãy CM tam giác \(EAH\) và \(ABD\) đồng dạng.

Từ đó suy ra \(\frac{EA}{AB}=\frac{AH}{BD}\) hay \(\frac{EA}{OB}=\frac{AC}{BD}\).

Từ đây CM được tam giác \(EAC\) và \(OBD\) đồng dạng.

Suy ra \(\widehat{ECA}=\widehat{ODB}\). Do đó nếu gọi \(OD\) cắt \(EC\) tại \(L\) thì CM được \(OD⊥EC\).

-----

Đường tròn đường kính \(NC\) cắt \(EC\) tại \(F\) nghĩa là \(NF⊥EC\), hay \(NF\) song song với \(OD\).

Vậy \(NF\) chính là đường trung bình của tam giác \(AOD\), vậy \(NF\) qua trung điểm \(AO\) (là một điểm cố định) (đpcm)

28 tháng 4 2020

N A B H M C O K I

1) Xét tứ giác CIOH có \(\widehat{CIO}+\widehat{CHO}=180^o\)nên là tứ giác nội tiếp

suy ra 4 điểm C,H,O,I cùng thuộc 1 đường tròn

2) vì OI \(\perp\)AC nên OI là đường trung trực của AC

\(\Rightarrow\widehat{AOM}=\widehat{COM}\)

Xét \(\Delta AOM\)và \(\Delta COM\)có :

\(\widehat{AOM}=\widehat{COM}\)( cmt )  

OM ( chung )

OA = OC

\(\Rightarrow\Delta AOM=\Delta COM\left(c.g.c\right)\)

\(\Rightarrow\widehat{OAM}=\widehat{OCM}=90^o\)

\(\Rightarrow OC\perp MC\)hay MC là tiếp tuyến của đường tròn O

3) Ta có : \(\hept{\begin{cases}\widehat{AOM}+\widehat{IAO}=90^o\\\widehat{IAO}+\widehat{HBC}=90^o\end{cases}}\Rightarrow\widehat{AOM}=\widehat{HBC}\)

Xét \(\Delta AOM\)và \(\Delta HCB\)có :

\(\widehat{AOM}=\widehat{HBC}\)\(\widehat{MAO}=\widehat{CHB}=90^o\)

\(\Rightarrow\Delta AOM~\Delta HBC\left(g.g\right)\)

4) Gọi N là giao điểm của BC và AM

Xét \(\Delta NAB\)có AO = OB ; OM // BN nên AM = MN

CH // AN \(\Rightarrow\frac{CK}{NM}=\frac{KH}{AM}\left(=\frac{BK}{BM}\right)\)

Mà AM = NM nên CK = KH 

\(\Rightarrow\)K là trung điểm của CH

4 tháng 12 2017

A B O C E F D I H K M J

a) Theo tính chất hai tiếp tuyến cắt nhau, ta có AE = EC; BF = FC

Vậy nên AE + BF = EC + CF = EF

b) Xét tam giác vuông BAD có AC là đường cao nên áp dụng hệ thức lượng trong tam giác, ta có:

\(DA^2=DC.DB\)

c)  Ta thấy rằng \(\Delta DCA\sim\Delta DAB\Rightarrow\frac{DA}{DB}=\frac{CA}{AB}\)

Lại có AB = 2OB; AC = 2AH.

Vậy nên \(\frac{DA}{DB}=\frac{2.AH}{2.OB}=\frac{AH}{OB}\)

Ta cũng có \(\widehat{DAH}=\widehat{DBO}\) (Cùng phụ với góc \(\widehat{BCA}\) )

Nên \(\Delta DAH\sim\Delta DBO\Rightarrow\widehat{DHA}=\widehat{DOB}\)

Mà \(\widehat{DHA}=\widehat{IHK}\) nên \(\widehat{DOB}=\widehat{IHK}\)

Xét tứ giác HIOK có \(\widehat{DOB}=\widehat{IHK}\) nên HIOK là tứ giác nội tiếp. Vậy thì \(\widehat{HIK}=\widehat{HOK}\)

\(\widehat{HIK}+\widehat{HAK}=\widehat{HOK}+\widehat{HAK}=90^o\)

\(\Rightarrow\widehat{AKI}=90^o\Rightarrow IK\perp AB\)

d) Từ A kẻ AJ song song với BD cắt BF tại J.

Khi đó ta thấy ngay ADBJ là hình bình hành. Vậy thì DJ giao với AB tại trung điểm mỗi đường hay O là trung điểm của AB và DJ.

Vậy ta có D, O , J  thẳng hàng.

Xét tam giác AFJ có \(AB\perp FJ\)

\(FO\perp BC\) mà BC // AJ nên \(FO\perp AJ\)

Vậy thì O là trực tâm tam giác AFJ hay \(JO\perp AF\)  (1)

Xét tam giác AIO có \(IK\perp AO;OH\perp AI\Rightarrow\) M là trực tâm tam giác.

Vậy thì \(AM\perp IO\)   (2)

Từ (1) và (2) suy ra A, M , F thẳng hàng.