Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
d, Vi ED la tiep tuyen (chung minh tren) => tam giac EDF vuong tai D
co \(\widehat{CDE}=\frac{1}{2}sd\widebat{DC}=\frac{1}{2}\widehat{COD}=\frac{1}{2}.120=60^o\)
ma \(\widehat{CED}+\widehat{COD}=180^o\Rightarrow\widehat{CED}=180-120=60^o\)
suy ra \(\Delta CED\) deu => EC=CD (1)
mat khac cung co \(\widehat{CFD}=\widehat{CDF}\) (phu hai goc bang nhau)
=> tam giac CDF can tai C
suy ra CD=CF (2)
tu (1),(2) suy ra dpcm
Đường tròn c: Đường tròn qua B với tâm O Đoạn thẳng h: Đoạn thẳng [C, D] Đoạn thẳng i: Đoạn thẳng [A, B] Đoạn thẳng j: Đoạn thẳng [C, E] Đoạn thẳng k: Đoạn thẳng [D, E] Đoạn thẳng l: Đoạn thẳng [E, A] Đoạn thẳng m: Đoạn thẳng [E, B] Đoạn thẳng n: Đoạn thẳng [B, C] O = (4.35, -6.12) O = (4.35, -6.12) O = (4.35, -6.12) B = (12.58, -6.03) B = (12.58, -6.03) B = (12.58, -6.03) Điểm C: Giao điểm đường của c, g Điểm C: Giao điểm đường của c, g Điểm C: Giao điểm đường của c, g Điểm A: Giao điểm đường của c, f Điểm A: Giao điểm đường của c, f Điểm A: Giao điểm đường của c, f Điểm D: Giao điểm đường của c, g Điểm D: Giao điểm đường của c, g Điểm D: Giao điểm đường của c, g Điểm E: Điểm trên c Điểm E: Điểm trên c Điểm E: Điểm trên c Điểm M: Giao điểm đường của i, j Điểm M: Giao điểm đường của i, j Điểm M: Giao điểm đường của i, j
a) Do E thuộc đường tròn tâm O nên \(\widehat{CED}=90^o\)
Xét tứ giác MEDO có \(\widehat{MED}=\widehat{MOD}=90^o\) nên MEDO là tứ giác nội tiếp hay 4 điểm E, M, O , D cùng thuộc một đường tròn.
b) Ta có \(\widehat{AEB}=\widehat{CED}=90^o\) nên \(EA^2+EB^2=AB^2;EC^2+ED^2=CD^2\)
Vậy thì \(EA^2+EB^2+EC^2+ED^2=CD^2+AB^2=4R^2+4R^2=8R^2\)
c) Ta có ngay \(\Delta CMO\sim\Delta CDE\left(g-g\right)\Rightarrow\frac{CM}{CD}=\frac{CO}{CE}\)
Vậy thì \(CM.CE=CO.CD=R.2R=2R^2\)
d) Ta thấy \(\widehat{AOC}=\widehat{COB}=90^o\Rightarrow\widebat{AC}=\widebat{CB}\)
Vậy thì \(\widehat{AEC}=\widehat{CEB}\) (Hai góc nội tiếp cùng chắn một cung)
hay EC là phân giác góc \(\widehat{AEB}.\)
e) Ta thấy \(\widehat{MCB}=\widehat{MAE}\) (Hai góc nội tiếp cùng chắn cung EB)
Vậy nên \(\Delta MCB\sim\Delta MAE\left(g-g\right)\Rightarrow\frac{MC}{MA}=\frac{MB}{ME}\Rightarrow MA.MB=MC.ME\)
1. Ta có ÐOMP = 900 ( vì PM ^ AB ); ÐONP = 900 (vì NP là tiếp tuyến ).
Như vậy M và N cùng nhìn OP dưới một góc bằng 900 => M và N cùng nằm trên đường tròn đường kính OP => Tứ giác OMNP nội tiếp.
2. Tứ giác OMNP nội tiếp => ÐOPM = Ð ONM (nội tiếp chắn cung OM)
Tam giác ONC cân tại O vì có ON = OC = R => ÐONC = ÐOCN
=> ÐOPM = ÐOCM.
Xét hai tam giác OMC và MOP ta có ÐMOC = ÐOMP = 900; ÐOPM = ÐOCM => ÐCMO = ÐPOM lại có MO là cạnh chung => DOMC = DMOP => OC = MP. (1)
Theo giả thiết Ta có CD ^ AB; PM ^ AB => CO//PM (2).
Từ (1) và (2) => Tứ giác CMPO là hình bình hành.
3. Xét hai tam giác OMC và NDC ta có ÐMOC = 900 ( gt CD ^ AB); ÐDNC = 900 (nội tiếp chắn nửa đường tròn ) => ÐMOC =ÐDNC = 900 lại có ÐC là góc chung => DOMC ~DNDC
=> => CM. CN = CO.CD mà CO = R; CD = 2R nên CO.CD = 2R2 không đổi => CM.CN =2R2không đổi hay tích CM. CN không phụ thuộc vào vị trí của điểm M.
.
a: góc CND=1/2*180=90 độ
góc DOM+góc DNM=180 độ
=>OMND nội tiếp
b: Xét ΔANC và ΔMNB cóa
góc ANC=góc MNB
góc NAC=góc NMB
=>ΔANC đồng dạng vớii ΔMNB
=>AN/MN=AC/MB
=>AN*MB=MN*AC