Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\widehat{OAM}=\widehat{OBM}=90^o\)(Vì AM là đường trung tuyến của (O))
\(\Rightarrow\widehat{OAM}+\widehat{OBM}=180^o\)
=> Tứ giác MAOB nội tiếp
Theo tính chất tiếp tuyến cắt nhau ta có MA=MB; OA=OB
=> MO là đường trung trực của AB
=> MO _|_ AB tại H
Mà \(\widehat{BAE}=90^o\)hay AE _|_ AB. Do đó AE // MO
Vì AE // MO và MA là tiếp tuyến của (O) nên \(\widehat{NMF}=\widehat{AEF}=\widehat{NAM}\)
=> Tam giác NMA đồng dạng tam giác NFM (gg)
=> \(\frac{NM}{NF}=\frac{NA}{NM}\)\(\Rightarrow NM^2=AN\cdot NF\left(1\right)\)
Ta có: \(\widehat{MFB}=\widehat{MHB}=90^o\)=> Tứ giác MFHB nội tiếp
\(\Rightarrow\widehat{FHN}=\widehat{FBM}\)mà \(\widehat{FBM}=\widehat{NAH}\)
\(\Rightarrow\widehat{NAH}=\widehat{FHN}\)
\(\Rightarrow\Delta NAH\)đồng dạng \(\Delta NHF\left(g.g\right)\)
\(\Rightarrow\frac{NA}{NH}=\frac{NH}{NF}\Rightarrow NH^2=NA\cdot NF\left(2\right)\)
(1)(2) => NM2=NH2 => MN=NH (đpcm)