K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 6 2019

A B O M N K C H I D P

Gọi KC cắt đường tròn (O) lần thứ hai tại I, BK cắt AC tại D. Kẻ đường kính IP của đường tròn (O).

Ta thấy ^IKP chắn nửa đường tròn (O) nên KP vuông góc KI. Mà KN vuông góc KI nên K,N,P thẳng hàng

Dễ dàng chứng minh \(\Delta\)IMO = \(\Delta\)PNO (c.g.c) => ^OIM = ^OPN => IM // PN hay IM // KN

Do KN vuông góc CK nên MI cũng vuông góc CK => ^MIC = ^MAC = 900 => Tứ giác ACIM nội tiếp

Suy ra ^AMC = ^AIC = ^ABK => MC // BK. Khi đó, \(\Delta\)ADB có M là trung điểm AB, MC // BD (C thuộc AD)

=> C là trung điểm AD. Nếu ta gọi BC cắt KH tại S thì \(\frac{HS}{AC}=\frac{KS}{CD}\left(=\frac{BS}{BC}\right)\)(Hệ quả ĐL Thales)

Vậy thì S là trung điểm của KH. Nói cách khác, BC chia đôi KH (tại S) (đpcm).

2 tháng 1 2019

bn hãy trả lời thật zui zẻ nghen

2 tháng 1 2019

what?

4 tháng 2 2022

a, Xét (O) có : 

^AMB = 900 ( góc nt chắn nửa đường tròn ) 

=> ^DMA = 900

Xét tứ giác ACMD có : 

^ACD = ^DMA = 900

mà 2 góc này kề nhau, cùng nhìn cạnh AD 

Vậy tứ giác ACMD là tứ giác nt 1 đường tròn 

b, Vì tứ giác ACMD là tứ giác nt 1 đường tròn 

=> ^HNM = ^HDM ( góc nt cùng chắn cung HM ) (1) 

^BNM = ^MAB ( góc nt cùng chắn cung BM ) (2) 

Từ (1) ; (2) => ^HDM = ^MAB 

Xét tam giác CAH và tam giác CDB có : 

^ACH = ^DCB = 900

^CAH = ^CDB ( cmt ) 

Vậy tam giác CAH ~ tam giác CDB (g.g) 

=> CA/CD = CH/BC => AC.BC = CH.CD 

11 tháng 2 2022

O A B M C K N H I D

a) Xét đường tròn (O) đường kính AB có \(\widehat{ANB}=\widehat{AMB}=90^o\) (góc nội tiếp chắn nửa đường tròn) => AM ⊥ MB; BN ⊥ AN hay AM ⊥ BC; BC ⊥ AC

Xét ΔABC có 2 đường cao AM, BN cắt nhau tại H => H là trực tâm ΔABC => CH ⊥ AB. Mà HK ⊥ AB (gt) => CH ≡ HK hay C, H, K thẳng hàng

b) Gọi giao điểm của NK với đường tròn (O) là D

ΔCNM ~ ΔCBA (c.g.c) => \(\widehat{CNM}=\widehat{ABC}\) (2 góc tương ứng)

ΔANK ~ ΔABC (c.g.c) => \(\widehat{ANK}=\widehat{ABC}\) (2 góc tương ứng)

=> \(\widehat{CNM}=\widehat{ANK}\) => \(90^o-\widehat{CNM}=90^o-\widehat{ANK}\) => \(\widehat{BNM}=\widehat{BND}\)

Xét đường tròn (O) có \(\widehat{BNM}=\widehat{BND}\) => \(\stackrel\frown{BM}=\stackrel\frown{BD}\) => B là điểm chính giữa cung MD

Do B, M cố định => D cố định => NK luôn đi qua điểm D cố định

c) Xét tứ giác HKBM có \(\widehat{HKB}=\widehat{HMB}=90^o\) => Tứ giác HKBM nội tiếp

=> AH.AM = AK.AB

Tương tự ta có BH.BN = BK.AB

=> AH.AM + BH.BN = AK.AB + BK.AB = AB(AK + BK) = AB2

Do AB không đổi nên AH.AM + BH.BN không đổi

d) CMTT câu b ta có \(\widehat{NMH}=\widehat{IMH}\) => MH là phân giác trong tại M của tam giác MNI

=> \(\dfrac{IH}{NH}=\dfrac{IM}{MN}\) (tính chất đường phân giác)

AM ⊥ MB (cmt) => MB là phân giác ngoài tại M của tam giác MNI

=> \(\dfrac{BI}{BN}=\dfrac{IM}{MN}\) (tính chất đường phân giác)

=> \(\dfrac{IH}{NH}=\dfrac{IB}{BN}\left(=\dfrac{IM}{MN}\right)\) => IH.BN = NH.IB

 

25 tháng 2 2017

B O A C D K H E

a, Xét tứ giác AKCH có: \(\widehat{AKC}+\widehat{AHC}=90+90=180\)=> tứ gác AKCH nội tiếp

b,Tứ giác AKCH nội tiếp => \(\widehat{HCK}=\widehat{HAD}\)(góc trong và góc ngoài đỉnh đối diện)

Mặt khác: \(\widehat{HAD}=\widehat{BCD}=\frac{1}{2}sđ\widebat{BD}\)

=> \(\widehat{BCD}=\widehat{ACD}\)=> CD là phân giác \(\widehat{KCB}\)

c,  Tứ giác AKCH nội tiếp: => \(\widehat{CKE}=\widehat{CAH}\)

Mà: \(\widehat{CDB}=\widehat{CAH}=\frac{1}{2}sđ\widebat{BC}\)

=> \(\widehat{CKE}=\widehat{CDE}\)=> tứ giác CKDE nội tiếp

=> \(\widehat{CKD}+\widehat{CED}=180\Rightarrow\widehat{CED}=180-\widehat{CKD}=180-90=90\)

=> \(CE⊥BD\)(ĐPCM)

d, em xem lại xem có gõ sai đề không nhé

16 tháng 8 2018

Câu d) Khi C di chuyển trên cung nhỏ̉ AB. Xác định vị trí C để CK.AD+CE.DB có giá trị lớn nhất. 

Nhờ mọi người giải dùm e với.