K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: góc CAD=1/2*sđ cung CD=90 độ

ΔEAF vuông tại A có AB là đường cao

nên EB*BF=BA^2

b: góc BCA=góc BDA=1/2*sđ cung BA=90 độ

=>BC vuông góc AE và BD vuông góc aF

ΔABE vuông tại B có BC là đường cao

nên AC*AE=AB^2

ΔABF vuông tại B có BD là đường cao

nên AD*AF=AB^2=AC*AE

=>AD/AE=AC/AF

=>ΔADC đồng dạng với ΔAEF

=>góc ADC=góc AEF

=>góc CDF+góc CEF=180 độ

=>CDFE nội tiếp

26 tháng 5 2018

A B C D P Q O I E

a) Ta có: Đường tròn (O;R) có đường kính CD và điểm A nằm trên cung CD => ^CAD=900

=> ^PAQ=900 => \(\Delta\)APQ vuông tại A

Do PQ là tiếp tuyến của (O) tại B => AB là đường cao của \(\Delta\)APQ

=> ^PAB=^AQP (Cùng phụ ^APQ) hay ^CAO=^DQP

Mà \(\Delta\)AOC cân tại O => ^CAO=^ACO => ^DQP=^ACO

Lại có: ^ACO+^PCD=1800 => ^DQP+^PCD=1800

=> Tứ giác CPQD nội tiếp đường tròn (đpcm).

b) Xét \(\Delta\)APQ vuông tại A: Có đường trung tuyến AI => \(\Delta\)AIQ cân tại I

=>  ^IAQ=^IQA hay ^IAQ=^DQP => ^IAQ=^ACO (Do ^DQP=^ACO)

Hay ^IAQ=^ACD. Mà ^IAQ+^CAI=900 => ^ACD+^CAI=900 

=> AI vuông góc với CD (đpcm).

c) Ta thấy tứ giác CPQD nội tiếp đường tròn

=> 4 đường trung trực của CP;CD;DQ;PQ cắt nhau tại 1 điểm (1)

E là tâm đường tròn ngoại tiếp \(\Delta\)CPQ => Trung trực của CP và CD cắt nhau tại E (2)

Từ (1) và (2) => Điểm E nằm trên trung trực của PQ.

Lại có: I là trung điểm PQ => E là điểm cách PQ 1 khoảng bằng đoạn EI (*)

AB vuông góc PQ; EI cũng vuông góc PQ => AB//EI hay AO//EI (3)

E thuộc trung trực CD; O là trung điểm CD => OE vuông góc CD.

Mà AI vuông góc CD => OE//AI (4)ư

Từ (3) và (4) => Tứ giác AOEI là hình bình hành => AO=EI (**)

Từ (*) và (**) => E là điểm cách PQ 1 khoảng bằng đoạn AO

Mà AO là bk của (O); PQ là tiếp tuyến của (O) tại B

Nên ta có thể nói: Điểm E là điểm cách tiếp tuyến của (O) tại B một khoảng bằng độ dài bán kính của (O)

Vậy khi đường kính CD thay đổi thì điểm E di động trên đường thẳng song song với tiếp tuyến tại B của đường tròn (O) và cách (O) 1 khoảng bằng độ dài bk của (O).

31 tháng 12 2021
4 tháng 6 2019

A B C D E F O H K

Ta có điểm C nằm trên đường tròn (AB) nên ^ACB = 900 => BC vuông góc AE

Xét \(\Delta\)BAE: ^ABE = 900, BC vuông góc AE (cmt) => AB2 = AC.AE (Hệ thức lượng trong tam giác vuông)

Tương tự AB2 = AD.AF. Do đó AC.AE = AD.AF. Từ đây, tứ giác ECDF nội tiếp.

Xét \(\Delta\)ABF: O là trung điểm AB; H là trung điểm BF => OH là đường trung bình trong \(\Delta\)ABF => OH // AF

Lại có CD là đường kính của (O), A thuộc (O) nên ^CAD = 900 => AE vuông góc AF

Do vậy OH vuông góc AE. Kết hợp với AO vuông góc HE (tại B) suy ra O là trực tâm \(\Delta\)AEH

=> EO vuông góc AH => ^AKE = ^ABE = 900 => A,K,B,E cùng thuộc đường tròn (AE)

Ta thấy AB,CD,KE tại O. Khi đó, áp dụng hệ thức lượng đường tròn: OE.OK = OA.OB = OC.OD

=> C,K,D,E cùng thuộc 1 đường tròn hay K thuộc đường tròn (DCE)

Mà tứ giác ECDF nội tiếp (cmt) nên K thuộc đường tròn ngoại tiếp tứ giác ECDF (đpcm).

4 tháng 6 2019

o A D K C E B H F

Bài Toán trên có các câu hỏi a, b, c  thứ tự  để hướng dẫn làm bài

I)Chứng minh tứ giác ECDF nội tiếp

+) ACBD là hình chữ nhật  ( tự chứng minh)

=> \(\widehat{ABC}=\widehat{ADC}\)

mà \(\widehat{ABC}=\widehat{AEB}\)( cùng phụ góc CBE)

=> \(\widehat{ADC}=\widehat{AEB}=\widehat{CEF}\)

=> Tứ giác ECDF nội tiếp

II) Chứng minh Tứ giác KDBO  nội tiếp

Xét \(\Delta ABE\)và \(\Delta FBA\)

Hai tam giác trên đồng dạng ( tự chứng minh)

=> \(\frac{AB}{FB}=\frac{BE}{BA}\Leftrightarrow\frac{2.OB}{2.BH}=\frac{BE}{BA}\Leftrightarrow\frac{OB}{BH}=\frac{BE}{BA}\)(1)

Mặt khác \(\widehat{OBE}=\widehat{HBA}=90^o\)(2)

(1), (2) => \(\Delta OBE~\Delta HBA\)

=> \(\widehat{BEO}=\widehat{BAH}=\widehat{OAK}\)

=> Tứ giác BEAK nội tiếp 

=> \(\widehat{AKO}=\widehat{OBE}=90^o\)

=> \(\widehat{OKH}=90^o\)(1)

Xét tam giác BDF vuông tại D , DH là đường trung tuyến

=> DH=HB

=> \(\widehat{HDB}=\widehat{HBD}=\widehat{BCD}=\widehat{ADC}\)

=> \(\widehat{ODH}=\widehat{ODB}+\widehat{HDB}=\widehat{ODB}+\widehat{ADO}=\widehat{ADB}=90^o\)(2)

Ta lại có: \(\widehat{OBH}=90^o\)(3)

Từ (1), (2), (3) 

=> DKOBH cùng thuộc đường tròn đường kính OH

=> DKOB nội tiếp (4)

III) Chứng minh tứ giác DKCE nội tiếp 

Từ (4)  => \(\widehat{DKO}+\widehat{DBO}=180^o\)

Mặt khác : \(\widehat{DBO}=\widehat{DCA}\)và \(\widehat{DCA}+\widehat{DCE}=180^o\)

Từ 3 điều trên => \(\widehat{DKO}=\widehat{DCE}=\widehat{OCE}\)

=> Tứ giác DKCE nội tiếp 

Từ (I) và (III)

=> D, K, C, E , F cùng thuộc một đường tròn

=> K thuộc đường tròn ngoại tiếp tứ giác ECDF

1/ Từ một điểm M  ở ngoài đường tròn (O) kẻ hai tiếp tuyến MA, MB( A,B là tiếp điểm) a/ CMR tứ giác MAOB nội tiếp định tâm I và bán kính của đường tròn nàyb/  Cho MO = 2R CMR tam giác MAB đều 2/ Cho đường tròn (O) đường kính AB gọi I là trung điểm của OA. Qua I vẽ dây CD vuông góc AB. K la trung điểm của BC. CMR tứ giác CIOK nội tiếp đường tròn3/ Cho nửa đường tròn (O) đường kính AB. Từ A...
Đọc tiếp

1/ Từ một điểm M  ở ngoài đường tròn (O) kẻ hai tiếp tuyến MA, MB( A,B là tiếp điểm) 

a/ CMR tứ giác MAOB nội tiếp định tâm I và bán kính của đường tròn này

b/  Cho MO = 2R CMR tam giác MAB đều 

2/ Cho đường tròn (O) đường kính AB gọi I là trung điểm của OA. Qua I vẽ dây CD vuông góc AB. K la trung điểm của BC. CMR tứ giác CIOK nội tiếp đường tròn

3/ Cho nửa đường tròn (O) đường kính AB. Từ A và B kẻ hai tiếp tuyến Ax, By. Qua điểm M thuộc nửa đường tròn kẻ tiếp tuyến thứ ba cắt Ax và By lần lượt tại E và F. CMR tứ giác AEMO là tứ giác nội tiếp 

4/ Cho tam giác ABC cân tại A có góc A nhọn, đường vuông góc với AB tại A cắt đường thẳng B, C tại E. Kẻ EN vuông với EC gọi M là trung điểm BC. CMR tứ giác AMNE là tứ giác nội tiếp đường tròn

Giải giúp mk vs mk đang cần gấp

1

Bài 2:

ΔOBC cân tại O

mà OK là trung tuyến

nên OK vuông góc BC

Xét tứ giác CIOK có

góc CIO+góc CKO=180 độ

=>CIOK là tứ giác nội tiếp

Bài 3:

Xét tứ giác EAOM có

góc EAO+góc EMO=180 độ

=>EAOM làtứ giác nội tiếp