K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
22 tháng 3 2023

Người ra đề chắc hơi lộn xộn một chút về kí hiệu các điểm, vì điểm \(A\left(1;2\right)\) chắc chắn không liên quan gì đến điểm A trong "cắt đường tròn tại 2 điểm AB" (vì một điểm thuộc đường tròn (C) còn 1 điểm thì không)

Để đỡ nhầm lẫn, chúng ta thay tên \(A\left(1;2\right)\) bằng \(M\left(1;2\right)\)

Đường tròn (C) tâm \(I\left(2;-1\right)\) bán kính \(R=2\)

Do \(AB=4=2R\) nên AB là đường kính

\(\Rightarrow\Delta\) đi qua tâm I

\(\overrightarrow{IM}=\left(1;-3\right)\Rightarrow\) đường thẳng \(\Delta\) nhận (3;1) là 1 vtpt

Phương trình \(\Delta\):

\(3\left(x-1\right)+1\left(y-2\right)=0\Leftrightarrow3x+y-5=0\)

22 tháng 3 2023

Dạ mình làm thế này được không ạ? (đề vẫn vậy ạ)

Không có mô tả.

 

19 tháng 6 2021

\(\left(C\right):x^2+y^2+4x-6y-12=0\)

\(\Leftrightarrow\left(C\right):\left(x+2\right)^2+\left(y-3\right)^2=25\)

\(\Rightarrow I=\left(-2;3\right)\) là tâm đường tròn, bán kính \(R=5\)

Kẻ IH vuông góc với AB.

\(\Rightarrow IH=\sqrt{R^2-AH^2}=\sqrt{5^2-\dfrac{1}{4}.50}=\dfrac{5\sqrt{2}}{2}\)

Đường thẳng AB có dạng: \(ax+by-2a=0\left(a^2+b^2\ne0\right)\)

Ta có: \(d\left(I;AB\right)=\dfrac{\left|-2a+3b-2a\right|}{\sqrt{a^2+b^2}}=\dfrac{5\sqrt{2}}{2}\)

\(\Leftrightarrow7a^2-48ab-7b^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=7b\\b=-7a\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}AB:7x+y-14=0\\AB:x-7y-2=0\end{matrix}\right.\)

a: Tọa độ tâm là:

x=(6+0)/2=3 và y=(0+8)/2=4

\(IA=\sqrt{\left(3-6\right)^2+\left(4-0\right)^2}=5\)

=>(C): (x-3)^2+(y-4)^2=25

 

NV
13 tháng 2 2022

Đường tròn (C) tâm O(0;0) bán kính R=1

Phương trình đường thẳng IO có dạng: \(y=x\)

Do A;B là giao điểm của 2 đường tròn \(\Rightarrow AB\perp IO\)

Gọi H là trung điểm AB \(\Rightarrow H\in OI\) ; \(AH=\dfrac{AB}{2}=\dfrac{\sqrt{2}}{2}\)

\(\Rightarrow OH=\sqrt{OA^2-AH^2}=\sqrt{1-\dfrac{1}{2}}=\dfrac{\sqrt{2}}{2}\)

Do H thuộc OI nên tọa độ có dạng: \(H\left(x;x\right)\Rightarrow OH=\sqrt{x^2+x^2}=\sqrt{2x^2}\)

\(\Rightarrow\sqrt{2x^2}=\dfrac{\sqrt{2}}{2}\Rightarrow x=\pm\dfrac{1}{2}\) \(\Rightarrow\left[{}\begin{matrix}H\left(\dfrac{1}{2};\dfrac{1}{2}\right)\\H\left(-\dfrac{1}{2};-\dfrac{1}{2}\right)\end{matrix}\right.\)

Đường thẳng AB qua H và vuông góc OI nên nhận \(\left(1;1\right)\) là 1 vtpt có dạng:

\(\left[{}\begin{matrix}1\left(x-\dfrac{1}{2}\right)+1\left(y-\dfrac{1}{2}\right)=0\\1\left(x+\dfrac{1}{2}\right)+1\left(y+\dfrac{1}{2}\right)=0\end{matrix}\right.\)  \(\Leftrightarrow\left[{}\begin{matrix}x+y-1=0\\x+y+1=0\end{matrix}\right.\)

Sửa đề: x^2+y^2+2x+6y-15=0

Δ vuông góc d nên Δ: 3x+4y+c=0

(C);x^2+y^2+2x+6y-15=0

=>x^2+2x+1+y^2+6y+9-25=0

=>(x+1)^2+(y+3)^2=25

=>R=5; I(-1;-3)

Kẻ IH vuông góc AB

=>H là trung điểm của AB

=>AH=6/2=3cm

=>IH=4cm

=>d(I;Δ)=IH=4

=>|c+3-12|/5=4

=>c=-11 hoặc c=29

=>3x+4y-11=0 hoặc 3x+4y+29=0

NV
14 tháng 4 2022

Đường tròn (C) tâm  I(1;2) bán kính \(R=\sqrt{5}\)

a.

\(\overrightarrow{OI}=\left(1;2\right)\Rightarrow\) đường thẳng OI nhận (2;-1) là 1 vtpt

Phương trình: \(2\left(x-0\right)-1\left(y-0\right)=0\Leftrightarrow2x-y=0\)

b.

Gọi H là trung điểm AB \(\Rightarrow IH\perp AB\Rightarrow IH=d\left(I;\Delta\right)\)

Áp dụng định lý Pitago: 

\(IH=\sqrt{IA^2-AH^2}=\sqrt{R^2-\left(\dfrac{AB}{2}\right)^2}=\dfrac{\sqrt{2}}{2}\)

Phương trình \(\Delta\) qua M có dạng: 

\(a\left(x-1\right)+b\left(y-3\right)=0\) với \(a^2+b^2>0\)

\(d\left(I;\Delta\right)=\dfrac{\left|a\left(1-1\right)+b\left(2-3\right)\right|}{\sqrt{a^2+b^2}}=\dfrac{\sqrt{2}}{2}\)

\(\Leftrightarrow\left|\sqrt{2}b\right|=\sqrt{a^2+b^2}\Leftrightarrow2b^2=a^2+b^2\)

\(\Leftrightarrow a^2=b^2\Leftrightarrow\left[{}\begin{matrix}a=b\\a=-b\end{matrix}\right.\)

Chọn \(a=1\Rightarrow\left[{}\begin{matrix}\left(a;b\right)=\left(1;1\right)\\\left(a;b\right)=\left(1;-1\right)\end{matrix}\right.\)

Có 2 đường thẳng thỏa mãn: \(\left[{}\begin{matrix}1\left(x-1\right)+1\left(y-3\right)=0\\1\left(x-1\right)-1\left(y-3\right)=0\end{matrix}\right.\)

16 tháng 12 2019

ĐÁP ÁN D

Đường tròn (C) có  tâm I( -1; 3).

Do đường thẳng ∆ qua M cắt đường tròn tại hai điểm A, B sao cho M là trung điểm của AB nên    I M    ⊥ Δ ( quan hệ vuông góc đường kính và dây cung).

Đường thẳng ∆: đi qua  M(-2; 1) và nhận   M I → (    1   ;     2 )  làm VTPT nên có phương trình là :

1. (x + 2) +  2(y – 1) = 0 hay x+ 2y  = 0