K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
30 tháng 4 2021

Khoảng cách AM là nhỏ nhất khi và chỉ khi M là hình chiếu vuông góc của A lên \(\Delta\)

Gọi d là đường thẳng qua A và vuông góc \(\Delta\Rightarrow\) d nhận \(\left(1;-1\right)\) là 1 vtpt

Phương trình d:

\(1\left(x-2\right)-1\left(y-2\right)=0\Leftrightarrow x-y=0\)

M là giao điểm của d và \(\Delta\) nên tọa độ thỏa mãn:

\(\left\{{}\begin{matrix}x+y-2=0\\x-y=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\) \(\Rightarrow M\left(1;1\right)\)

13 tháng 3 2021

Xét vị trí của hai điểm P, Q, ta có:

\(\left(2.6-1-1\right)\left(-3.2+2-1\right)< 0\)

\(\Rightarrow P,Q\) khác phía so với \(\Delta\)

Phương trình đường thẳng PQ: \(\dfrac{x+3}{-3-6}=\dfrac{y+2}{-2-1}\Leftrightarrow x-3y-3=0\)

\(MP+MQ\) nhỏ nhất khi M, P, Q thẳng hàng hay M là giao điểm của PQ với \(\Delta\):

\(\Rightarrow M\) có tọa độ là nghiệm của hệ \(\left\{{}\begin{matrix}2x-y-1=0\\x-3y-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=-1\end{matrix}\right.\Rightarrow M=\left(0;-1\right)\)

13 tháng 3 2021

Thanks

21 tháng 4 2018

Giải bài 4 trang 93 SGK hình học 10 | Giải toán lớp 10

a, Cách 1: Gọi O’ là điểm đối xứng với O qua (Δ)

⇒ OO’ ⊥ Δ tại trung điểm I của OO’.

+ (Δ) nhận Giải bài 4 trang 93 SGK hình học 10 | Giải toán lớp 10 là một vtpt ⇒ (Δ) nhận Giải bài 4 trang 93 SGK hình học 10 | Giải toán lớp 10 là một vtcp

OO’ ⊥ Δ ⇒ OO’ nhận Giải bài 4 trang 93 SGK hình học 10 | Giải toán lớp 10 là một vtpt. Mà O(0, 0) ∈ OO’

⇒ Phương trình đường thẳng OO’: x + y = 0.

+ I là giao OO’ và Δ nên tọa độ của I là nghiệm của hệ phương trình:

Giải bài 4 trang 93 SGK hình học 10 | Giải toán lớp 10

Cách 2: Gọi O’(x, y) là điểm đối xứng với O qua Δ.

+ Trung điểm I của OO’ là Giải bài 4 trang 93 SGK hình học 10 | Giải toán lớp 10

Giải bài 4 trang 93 SGK hình học 10 | Giải toán lớp 10

+ (Δ) nhận Giải bài 4 trang 93 SGK hình học 10 | Giải toán lớp 10 là một vtpt ⇒ (Δ) nhận Giải bài 4 trang 93 SGK hình học 10 | Giải toán lớp 10 là một vtcp.

Giải bài 4 trang 93 SGK hình học 10 | Giải toán lớp 10

Từ (1) và (2) ta có hệ phương trình

Giải bài 4 trang 93 SGK hình học 10 | Giải toán lớp 10

Vậy O’(–2; 2).

b)

+ Vì O và A nằm cùng một nửa mặt phẳng bờ là đường thẳng Δ nên đoạn thẳng OA không cắt Δ.

O’ và A thuộc hai nửa mặt phẳng khác nhau bờ là đường thẳng Δ nên O’A cắt Δ.

Do O’ đối xứng với O qua đường thẳng ∆ nên ∆ là đường trung trực của đoạn thẳng OO’, với mọi M ∈ Δ ta có MO = MO’.

Độ dài đường gấp khúc OMA bằng OM + MA = O’M + MA ≥ O’A.

⇒ O’M + MA ngắn nhất khi O’M + MA = O’A ⇔ M là giao điểm của O’A và Δ.

Giải bài 4 trang 93 SGK hình học 10 | Giải toán lớp 10

⇒ O’A nhận Giải bài 4 trang 93 SGK hình học 10 | Giải toán lớp 10 là một vtcp

⇒ O’A nhận Giải bài 4 trang 93 SGK hình học 10 | Giải toán lớp 10 là một vtpt. Mà A(2; 0) ∈ O’A

⇒ Phương trình đường thẳng O’A : 1(x - 2) + 2(y - 0)= 0 hay x + 2y – 2 = 0.

M là giao điểm của O’A và Δ nên tọa độ điểm M là nghiệm của hệ :

Giải bài 4 trang 93 SGK hình học 10 | Giải toán lớp 10

Vậy điểm M cần tìm là Giải bài 4 trang 93 SGK hình học 10 | Giải toán lớp 10

9 tháng 5 2021

Trước hết ta thấy O, A nằm trên cùng một mặt phẳng bờ \(\Delta\).

Qua A kẻ đường thẳng d vuông góc với \(\Delta\) tại H.

Đường thẳng d có phương trình: \(x+y-2=0\)

\(\Rightarrow H\) có tọa độ là nghiệm hệ \(\left\{{}\begin{matrix}x-y+2=0\\x+y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=2\end{matrix}\right.\Rightarrow H=\left(0;2\right)\)

Gọi A' là điểm đối xứng với A qua d

\(\Rightarrow\left\{{}\begin{matrix}x_{A'}=2x_H-x_A=-2\\y_{A'}=2y_H-y_A=4\end{matrix}\right.\Rightarrow A'=\left(-2;4\right)\)

\(\Rightarrow OA'=2\sqrt{5}\)

Phương trình đường thẳng OA': \(2x+y=0\)

Khi đó: \(OM+MA=OM+MA'\ge OA'=2\sqrt{5}\)

\(min=2\sqrt{5}\Leftrightarrow M\) là giao điểm của \(\Delta\) và OA'

\(\Leftrightarrow M\) có tọa độ là nghiệm hệ \(\left\{{}\begin{matrix}x-y+2=0\\2x+y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{2}{3}\\y=\dfrac{4}{3}\end{matrix}\right.\Rightarrow M=\left(-\dfrac{2}{3};\dfrac{4}{3}\right)\)

AH
Akai Haruma
Giáo viên
9 tháng 5 2021

Lời giải:

Vì $M$ thuộc $\Delta$ nên $M$ có tọa độ $(a-2,a)$

Độ dài đường gấp khúc $OMA$ là:

$OM+MA=\sqrt{a^2+(a-2)^2}+\sqrt{(a-4)^2+a^2}$

$=\sqrt{2}.(\sqrt{(a-1)^2+1}+\sqrt{(2-a)^2+2^2})$

$\geq \sqrt{2}.\sqrt{(a-1+2-a)^2+(1+2)^2}$ (theo BĐT Mincopxky)

$=2\sqrt{5}$

Vậy $OMA$ min bằng $2\sqrt{5}$. Giá trị này đạt tại $a=\frac{4}{3}$

Vậy $M(\frac{-2}{3},\frac{4}{3})$

19 tháng 2 2023

Gọi `M(2y-5;y) in \Delta`

Ta có: `AM=\sqrt{10}`

`<=>|\vec{AM}|=\sqrt{10}`

`<=>\sqrt{(2y-5-2)^2+(y-1)^2}=\sqrt{10}`

`<=>4y^2-28y+49+y^2-2y+1=10`

`<=>[(y=4),(y=2):}`

  `=>[(M(3;4)),(M(-1;2)):}`

26 tháng 2 2018

Đáp án C

23 tháng 11 2021

A nhé

hihhihihiihihihhiihhiihihihih

NV
5 tháng 3 2021

Do A thuộc \(\Delta\) nên tọa độ có dạng \(A\left(-2-2t;1+2t\right)\Rightarrow\overrightarrow{AM}=\left(2t+5;-2t\right)\)

\(\Rightarrow AM=\sqrt{\left(2t+5\right)^2+\left(-2t\right)^2}=\sqrt{13}\)

\(\Leftrightarrow8t^2+20t+25=13\)

\(\Leftrightarrow8t^2+20t+12=0\Rightarrow\left[{}\begin{matrix}t=-1\\t=-\dfrac{3}{2}\end{matrix}\right.\)

Có 2 điểm A thỏa mãn: \(\left[{}\begin{matrix}A\left(0;-1\right)\\A\left(1;-2\right)\end{matrix}\right.\)

b. Do B thuộc \(\Delta\) nên tọa độ có dạng \(B\left(-2-2t;1+2t\right)\Rightarrow\overrightarrow{BM}=\left(2t+5;-2t\right)\)

\(MB=\sqrt{\left(2t+5\right)^2+\left(-2t\right)^2}=\sqrt{8t^2+20t+25}=\sqrt{8\left(t+\dfrac{5}{4}\right)^2+\dfrac{25}{2}}\ge\sqrt{\dfrac{25}{2}}\)

Dấu "=" xảy ra khi \(t+\dfrac{5}{4}=0\Leftrightarrow t=-\dfrac{5}{4}\Rightarrow B\left(\dfrac{1}{2};-\dfrac{3}{2}\right)\)