Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đường thẳng song song d nên nhận (3;-4) là 1 vtpt
Phương trình:
\(3\left(x-2\right)-4\left(y-1\right)=0\Leftrightarrow3x-4y-2=0\)
gọi H(x;y) là điểm thuộc tia phân giác của 2 đường thẳng 3x-4y+12=0(d1) va 12x+5y-7=0(d2)
\(\Rightarrow\) d(H;d1) = d(H;d2) \(\Leftrightarrow\dfrac{\left|3x-4y+12\right|}{\sqrt{3^2+\left(-4\right)^2}}=\dfrac{\left|12x+5y-7\right|}{\sqrt{12^2+5^2}}\Leftrightarrow\)
\(13\left(3x-4y+12\right)=\pm5\left(12x+5y-7\right)\)vậy pt 2 đường phân giác là:
\(\Leftrightarrow\left[{}\begin{matrix}21x+77y-192=0\\99x-27y+121=0\end{matrix}\right.\)
Đường tròn tâm \(I\left(3;-2\right)\) bán kính \(R=5\)
Áp dụng định lý Pitago: \(d\left(I;AB\right)=\sqrt{R^2-\left(\frac{AB}{2}\right)^2}=3\)
d' song song d nên pt có dạng: \(3x-4y+c=0\) (với \(c\ne-2\))
\(d\left(I;d'\right)=3\Leftrightarrow\frac{\left|3.3-4.\left(-2\right)+c\right|}{\sqrt{3^2+\left(-4\right)^2}}=3\)
\(\Leftrightarrow\left|c+17\right|=15\Rightarrow\left[{}\begin{matrix}c=-2\left(l\right)\\c=-32\end{matrix}\right.\)
Vậy pt d': \(3x-4y-32=0\)
b/ \(\Delta\) là tiếp tuyến (C) \(\Leftrightarrow d\left(I;\Delta\right)=R\)
\(\Leftrightarrow\frac{\left|3.3+4.\left(-2\right)+m\right|}{\sqrt{3^2+4^2}}=5\Leftrightarrow\left|m+1\right|=25\Rightarrow\left[{}\begin{matrix}m=24\\m=-26\end{matrix}\right.\)
Có 2 đường thẳng thỏa mãn: \(\left[{}\begin{matrix}3x+4y+24=0\\3x+4y-26=0\end{matrix}\right.\)
c/ Thay tọa độ đường thẳng vào pt (C) được:
\(\left(3+2t\right)^2+\left(-2-t\right)^2-6\left(3+2t\right)+4\left(-2-t\right)-12=0\)
\(\Leftrightarrow5t^2-25=0\Rightarrow t=\pm\sqrt{5}\)
Tọa độ giao điểm: \(\left\{{}\begin{matrix}A\left(3+2\sqrt{5};-2-\sqrt{5}\right)\\B\left(3-2\sqrt{5};-2+\sqrt{5}\right)\end{matrix}\right.\)
Gọi \(M\left(x;y\right)\) là điểm thuộc phân giác của 2 đường thẳng
\(\Leftrightarrow d\left(M;\Delta_1\right)=d\left(M;\Delta_2\right)\)
a/ \(\frac{\left|2x+4y+7\right|}{\sqrt{2^2+4^2}}=\frac{\left|5x+3y+7\right|}{\sqrt{5^2+3^2}}\)
\(\Leftrightarrow\sqrt{17}\left|2x+4y+7\right|=\sqrt{10}\left|5x+3y+7\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}2\sqrt{17}x+4\sqrt{17}y+7\sqrt{17}=5\sqrt{10}x+3\sqrt{10}y+7\sqrt{10}\\2\sqrt{17}x+4\sqrt{17}y+7\sqrt{17}=-5\sqrt{10}x-3\sqrt{10}y-7\sqrt{10}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(2\sqrt{17}-5\sqrt{10}\right)x+\left(4\sqrt{17}-3\sqrt{10}\right)y+7\sqrt{17}-7\sqrt{10}=0\\\left(2\sqrt{17}+5\sqrt{10}\right)x+\left(4\sqrt{17}+3\sqrt{10}\right)y+7\sqrt{17}+7\sqrt{10}=0\end{matrix}\right.\)
Câu b bạn làm tương tự. Số xấu quá nhìn chẳng muốn làm luôn
hình như bạn nhầm \(\sqrt{5^2+3^2}=\sqrt{34}\) chứ sai lại là \(\sqrt{17}\)
Áp dụng công thức:
d(M0 ;∆) = \(\dfrac{\left|ax_0+by_0+c\right|}{\sqrt{a^2+b^2}}\)
a) d(M0 ;∆) = \(\dfrac{\left|4\cdot3+3\cdot5+1\right|}{\sqrt{4^2+3^2}}=\dfrac{28}{5}\)
b) d(B ;d) = \(\dfrac{\left|3\cdot1-4\cdot\left(-2\right)-26\right|}{\sqrt{3^2+\left(-4\right)^2}}=-\dfrac{15}{5}=\dfrac{15}{5}=3\)
c) Dễ thấy điểm C nằm trên đường thẳng m : C ε m
Áp dụng công thức:
d(M0 ;∆) =
a) d(M0 ;∆) = =
b) d(B ;d) = = = = 3
c) Dễ thấy điểm C nằm trên đường thẳng m : C ε m.
Giả sử đường thẳng ∆ song song với d : 3x- 4y+2= 0
Khi đó ; ∆ có phương trình là ∆ : 3x-4y +C= 0.
Lấy điểm M( -2 ; -1) thuộc d.
Do đó ; 2 đường thẳng thỏa mãn là:3x – 4y + 7 = 0 và 3x – 4y – 3 = 0
Chọn B