Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
https://olm.vn/hoi-dap/detail/85270726121.html
Tham khảo link này(mình gửi cho)
Học tốt!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Làm được câu a và b thôi sorry nhé
a) +)AM=BM thì C trùng vơi E và tam giác ACB rõ ràng vuông cân(do có 2 góc đáy=45)
\Rightarrow đpcm
+)AM khác BM không mất tính tổng quát giả sử AM<BM \Rightarrow C nằm giữa E và M
AC vuông góc với BE vì 2 đường thẳng này đều hợp với AB 1 góc 45 và chúng không // với nhau.
EM vuông góc với AB
\Rightarrow C là trực tâm tam giác AEB => AE vuông góc BC
2 tam giác vuông AME và CMB bằng nhau (c.g.c)
\Rightarro AE=BC
Vậy AE=BC và AE vuông góc với BC (đccm)
b) vẫn xét TH AM<BM các TH khác tương tự
CD cắt AH tại J rõ ràng tamgiac DJA ~ tamgiacHJC (g
CMR:JDJA=JHJCJDJA=JHJC
CMR:tamgiac DJH ~ tamgiacAJC (c.g.c)
Tam giác sau có góc DHA = góc DCA=45
Hoàn toàn tương tự với tứ giác BHEF ( phải xác định giao điểm của HE và BF)
Do đó:góc EHF = góc EBF =45
\Rightarrow góc DHA=góc EHF \Rightarrow 2 góc đối đỉnh \Rightarrow D,H,F thẳng hàng.
Gọi OO là giao ÁC,MDÁC,MD
ˆCHA=90∘⇒HO=AC2=MD2⇒ˆDHM=90∘CHA^=90∘⇒HO=AC2=MD2⇒DHM^=90∘
Tương tự ˆFHM=90∘⇒ˆDHF=90circ⇒D,H,FFHM^=90∘⇒DHF^=90circ⇒D,H,F thẳng hàng
Gọi II là giao DF,ACDF,AC
Đỏ ỐIỐI song song MF⇒IMF⇒I là trung điểm của DFDF
Kẻ II′⊥AB⇒I′II′⊥AB⇒I′ là trung điểm ABAB
Chứng minh II′=AB2⇒III′=AB2⇒I nằm trên đường trung trực của ABAB và cách ABAB một khoảng bằng AB2AB2