Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Hệ số a là: a=1
\(f(0) = {0^2} - 4.0 + 3 = 3\)
\(f(1) = {1^2} - 4.1 + 3 = 0\)
\(f(2) = {2^2} - 4.2 + 3 = - 1\)
\(f(3) = {3^2} - 4.3 + 3 = 0\)
\(f(4) = {4^2} - 4.4 + 3 = 3\)
=> f(0); f(4) cùng dấu với hệ số a; f(2) khác dấu với hệ số a
b) Nhìn vào đồ thị ta thấy
- Trên khoảng \(\left( { - \infty ;1} \right)\) đồ thị nằm phía trên trục hoành
- Trên khoảng \(\left( {1;3} \right)\), đồ thị nằm phía dưới trục hoành
- Trên khoảng \(\left( {3; + \infty } \right)\), đồ thị nằm phía trên trục hoành
c) - Trên khoảng \(\left( { - \infty ;1} \right)\) đồ thị nằm phía trên trục hoành => f(x)>0, cùng dầu với hệ số a
- Trên khoảng \(\left( {1;3} \right)\), đồ thị nằm phía dưới trục hoành => f(x) <0, khác dấu với hệ số a
- Trên khoảng \(\left( {3; + \infty } \right)\), đồ thị nằm phía trên trục hoành => f(x)>0, cùng dấu với hệ số a
Từ giả thiết ta có:
\(\left\{{}\begin{matrix}a< 0\\\dfrac{4ab-4}{4a}=4\\-\dfrac{1}{a}=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-1\\b=3\end{matrix}\right.\)
\(\Rightarrow\) (P) cắt Oy tại điểm có tung độ bằng 3
a) Đk:\(x\in R\)
TH1:Xét \(x\in\left(3;+\infty\right)\)
Lấy \(x_1;x_2\in\left(3;+\infty\right)\) thỏa mãn \(x_1\ne x_2\)
Xét \(I=\dfrac{f\left(x_1\right)-f\left(x_2\right)}{x_1-x_2}=\dfrac{2x_1^2-4x_1+3-\left(2x_2^2-4x_2+3\right)}{x_1-x_2}\)\(=2\left(x_1+x_2\right)-4\)
Do \(x_1;x_2\in\left(3;+\infty\right)\)\(\Rightarrow2\left(x_1+x_2\right)>12\Leftrightarrow2\left(x_1+x_2\right)-4>8>0\)
\(\Rightarrow I>0\)
Hàm đồng biến trên \(\left(3;+\infty\right)\)
TH2:Xét \(x\in\left(-10;1\right)\)
Lấy \(x_1;x_2\in\left(-10;1\right):x_1\ne x_2\)
Xét \(I=2\left(x_1+x_2\right)-4\)
Do \(x_1< 1;x_2< 1\Rightarrow2\left(x_1+x_2\right)< 4\Rightarrow I=2\left(x_1+x_2\right)-4< 0\)
Hàm nb trên khoảng \(\left(-10;1\right)\)
b)Làm tương tự,hàm nb trên \(\left(1;+\infty\right)\) và đb trên \(\left(-10;-2\right)\)
c)Đk: \(x\in R\backslash\left\{2\right\}\)
=>Hàm số xác định trên \(\left(-\infty;2\right)\)
Lấy \(x_1;x_2\in\left(-\infty;2\right):x_1\ne x_2\)
Xét \(I=\dfrac{f\left(x_1\right)-f\left(x_2\right)}{x_1-x_2}=\dfrac{\dfrac{x_1}{x_1-2}-\dfrac{x_2}{x_2-2}}{x_1-x_2}=\dfrac{-2}{\left(x_1-2\right)\left(x_2-2\right)}\)
Do \(x_1;x_2< 2\Rightarrow\left(x_1-2\right)\left(x_2-2\right)>0\)
\(\Rightarrow I=-\dfrac{2}{\left(x_1-2\right)\left(x_2-2\right)}< 0\)
Hàm nb trên \(\left(-\infty;2\right)\)
d)\(I=\dfrac{1}{\left(x_1+1\right)\left(x_2+1\right)}\)
Hàm đb trên \(\left(-1;+\infty\right)\) ; \(\left(-3;-2\right)\)
e)TXĐ:D=R
Lấy \(x_1;x_2\in\left(0;+\infty\right):x_1< x_2\)
\(T=f\left(x_1\right)-f\left(x_2\right)=x_1^{2020}+x_1^2-3-x_2^{2020}-x_2^2+3=x_1^{2020}-x_2^{2020}+x_1^2-x_2^2\)
Do \(x_1< x_2\Rightarrow x_1^{2020}< x_2^{2020};x_1^2< x_2^2\)
\(\Rightarrow T=x_1^{2020}-x_2^{2020}+x_1^2-x_2^2< 0\)
Hàm đb trên \(\left(0;+\infty\right)\)
Dựa vào đồ thị, ta thấy:
a) Trên khoảng \(\left( { - \infty ;0} \right)\) , giá trị của f(x) tăng
b) Trên khoảng \(\left( {0; + \infty } \right)\) , giá trị của f(x) giảm
Dựa vào độ thị ta thấy (0; 0); (2; 2); (-2; 2) nằm trên đồ thị hàm số \(y = \frac{1}{2}{x^2}\)
Ta nhận ra được: \(\begin{array}{l}0 = \frac{1}{2}{.0^2}\\2 = \frac{1}{2}{.2^2}\\2 = \frac{1}{2}.{( - 2)^2}\end{array}\) Vì vậy những điểm có tọa độ \(\left( {x;\frac{1}{2}{x^2}} \right)\) sẽ nằm trên đồ thị.
Vẽ đồ thị \(y = 3x + 1;y = - 2{x^2}\)
a) Trên \(\mathbb{R}\), đồ thị \(y = 3x + 1\) đi lên từ trái sang phải, như vậy hàm số \(y = 3x + 1\) đồng biến trên \(\mathbb{R}\)
b) Trên khoảng \(\left( { - \infty ;0} \right)\), đồ thị \(y = - 2{x^2}\)đi lên từ trái sang phải với mọi \(x \in \left( { - \infty ;0} \right)\) , như vậy hàm số đồng biến trên \(\left( { - \infty ;0} \right)\)
Trên khoảng \(\left( {0; + \infty } \right)\), đồ thị \(y = - 2{x^2}\)đi xuống từ trái sang phải với mọi \(x \in \left( {0; + \infty } \right)\) , như vậy hàm số nghịch biến trên \(\left( {0; + \infty } \right)\)
Ta có: hệ số a=-2<0
a) Nhìn vào đồ thị ta thấy
- Trên khoảng \(\left( { - \infty ; - 1} \right)\) đồ thị nằm phía dưới trục hoành
- Trên khoảng \(\left( { - 1;\frac{3}{2}} \right)\), đồ thị nằm phía trên trục hoành
- Trên khoảng \(\left( {\frac{3}{2}; + \infty } \right)\), đồ thị nằm phía dưới trục hoành
c) - Trên khoảng \(\left( { - \infty ; - 1} \right)\) đồ thị nằm phía dưới trục hoành => f(x)<0, cùng dầu với hệ số a
- Trên khoảng \(\left( { - 1;\frac{3}{2}} \right)\), đồ thị nằm phía trên trục hoành => f(x) >0, khác dấu với hệ số a
- Trên khoảng \(\left( {\frac{3}{2}; + \infty } \right)\), đồ thị nằm phía dưới trục hoành => f(x)<0, cùng dấu với hệ số a.