K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 11 2023

a) Do AB là tiếp tuyến của (O) tại B nên \(\widehat{ABO}=90^o\). CMTT, ta có \(\widehat{ACO}=90^o\) \(\Rightarrow\widehat{ABO}+\widehat{ACO}=180^o\) \(\Rightarrow\) Tứ giác ABOC nội tiếp (đpcm).

b) Theo tính chất 2 tiếp tuyến cắt nhau, ta có \(AO\perp BC\). Tam giác ABO vuông tại B, có đường cao BH nên \(AB^2=AH.AO\)

 Mặt khác, lại có \(\widehat{ABD}=\widehat{ACB}\) (góc tạo bởi tiếp tuyến và dây cung và góc nội tiếp cùng chắn cung đó) nên \(\Delta ABD~\Delta AEB\left(g.g\right)\) \(\Rightarrow\dfrac{AB}{AE}=\dfrac{AD}{AB}\) \(\Rightarrow AB^2=AD.AE\)

Từ đó dễ dàng suy ra \(AD.AE=AH.AO\)

c) Do tính chất của 2 tiếp tuyến cắt nhau nên \(\left\{{}\begin{matrix}MD=MB\\ND=NC\end{matrix}\right.\)

Do đó \(C_{AMN}=AM+AN+MN\)

\(=AM+AN+\left(MD+ND\right)\)

\(=\left(AM+MD\right)+\left(AN+ND\right)\)

\(=\left(AM+MB\right)+\left(AN+NC\right)\)

\(=AB+AC\)

\(=2AB\)

Lại có \(AB=\sqrt{AO^2-R^2}=\sqrt{6^2-3,6^2}=4,8cm\)

\(\Rightarrow C_{AMN}=2AB=2.4,8=9,6cm\)

22 tháng 11 2023

k biết

 

15 tháng 7 2018

a,  A B M ^ = A N B ^ = 1 2 s đ B M ⏜

Chứng minh được: ∆ABM:∆ANB (g.g) => ĐPCM

b, Chứng minh AO ^ BC áp dụng hệ thức lượng trong tam giác vuông ABO và sử dụng kết quả câu a) Þ AB2 = AH.AO

c, Chứng minh được  A B I ^ = C B I ^ B I ⏜ = C I ⏜ => BI là phân giác  A B C ^ . Mà AO là tia phân giác  B A C ^ => I là tâm đường tròn nội tiếp ∆ABC

 Bài 1: Từ điểm A ở bên ngoài đường tròn (O), kẻ hai tiếp tuyến AB, AC đến đường tròn (O) (B,C là hai tiếp điểm). Kẻ cát tuyến ADE vs đường tròn (O) (D nằm giữa A và E).a) cm: A,B,O,C cùng thuộc một đường tròn.b) cm: OA vuông BC tại H và OD2 = OH.OA. Từ đó suy ra tam giác OHD đồng dạng vs tam giác ODA.c) cm: BC trùng với tia phân giác của góc DHE.d) Từ D kẻ đường thẳng song song với BE, đường...
Đọc tiếp

 Bài 1: Từ điểm A ở bên ngoài đường tròn (O), kẻ hai tiếp tuyến AB, AC đến đường tròn (O) (B,C là hai tiếp điểm). Kẻ cát tuyến ADE vs đường tròn (O) (D nằm giữa A và E).

a) cm: A,B,O,C cùng thuộc một đường tròn.

b) cm: OA vuông BC tại H và OD= OH.OA. Từ đó suy ra tam giác OHD đồng dạng vs tam giác ODA.

c) cm: BC trùng với tia phân giác của góc DHE.

d) Từ D kẻ đường thẳng song song với BE, đường thẳng này cắt AB, AC lần lượt tại M và N. cm: D là trung điểm MN.

Bài 2: Cho đường tròn tâm O bán kính R, dây BC khác đường kính. Hai tiếp tuyến của đường tròn (O,R) tại B và tại C cắt nhau tại A. Kẻ đường kính CD, kẻ BH vuông góc vs CD tại H.

a) cm: A,B,O,C cùng thuoojcj một đường tròn. Xác định tâm và bán kính của đường tròn đó.

b) cm: AO vuông góc vs BC. Cho biết R=15cm, BC=24cm. Tính AB, OA.

c) cm: BC là tia phân giác của góc ABH.

d) Gọi I là giao điểm của AD và BH, E là giao điểm của BD và AC. cm: IH=IB.

0

a: góc ABO+góc ACO=90+90=180 độ

=>ABOC nội tiếp đường tròn đường kính OA

Tâm là trung điểm của OA

Bán kính là OA/2

b: Xét (O) có

AB,AC là tiếp tuyến

=>AB=AC
mà OB=OC

nên OA là trung trực của BC

=>AO vuông góc BC

c: Xét ΔAMB và ΔABN có

góc AMB=góc ABN

góc MAB chung

=>ΔAMB đồng dạng với ΔABN

=>AM/AB=AB/AN

=>AB^2=AM*AN=AH*AO

15 tháng 9 2019

a, A,H,O thẳng hàng vì AH,AO cùng vuông góc với BC

HS tự chứng minh A,B,C,O cùng thuộc đường tròn đường kính OA

b, Ta có  K D C ^ = A O D ^ (cùng phụ với góc  O B C ^ )

=> ∆KDC:∆COA (g.g) => AC.CD = CK.AO

c, Ta có:  M B A ^ = 90 0 - O B M ^ và  M B C ^ = 90 0 - O M B ^

Mà  O M B ^ = O B M ^ (∆OBM cân) =>  M B A ^ = M B C ^

=> MB là phân giác  A B C ^ . Mặt khác AM là phân giác B A C ^

Từ đó suy ra M là tâm đường tròn nội tiếp tam giác ABC

d, Kẻ CD ∩ AC = P. Chứng minh ∆ACP cân tại A

=> CA = AB = AP => A là trung điểm CK

9 tháng 5 2021

a.  Ta có: \(\Lambda\)ABO=90 ( do AB là tiếp tuyến của (O))
                \(\Lambda\)ACO=90 ( do AC là tiếp tuyến của (O))
     \(\Rightarrow\) \(\Lambda\)ABO + \(\Lambda\)ACO = 90 + 90 = 180.

     Suy ra: tứ giác ABOC nội tiếp.

b.  Ta có: AB,AC lần lượt là tiếp tuyến của (O) nên AB=AC.

     \(\Rightarrow\)\(\Delta\)ABC cân tại A lại có AH là tia phân giác nên AH cũng là đường cao

     \(\Rightarrow\)AO\(\perp\)BC tại H.

     Áp dụng đinh lý Py-ta-go vào \(\Delta\)ABO ta có:

         AO2 = AB2 + BO2 = 42 + 32 = 25

     \(\Rightarrow\)AO = 5 (cm).

     Áp dụng hệ thức giữa cạnh và đường cao trong tam giác vuông ABO ta được:

         AB2 = AH.AO \(\Rightarrow\) AH = \(\dfrac{AB^2}{AO}\)=\(\dfrac{16}{5}\)(cm)

c.  Ta có: \(\Lambda\)ACE=\(\Lambda\)ADC ( tính chất của góc tạo bởi tia tiếp tuyến và dây cung )

     Xét \(\Delta\)ACE và \(\Delta\)ADC có:

     \(\Lambda ACE=\Lambda ADC\) 

     \(\Lambda\)CAD chung

     Do đó: \(\Delta ACE\sim\Delta ADC\) \(\Rightarrow\dfrac{AC}{AD}=\dfrac{AE}{AC}\) \(\Rightarrow\)AC2 = AD.AE (1)

     Áp dụng hệ thức giữa cạnh và đường cao trong tam giác vuông ACO có:

                    AC2 = AH.AO (2)

    Từ (1) và (2) ,suy ra: AD.AE = AH.AO.

    

9 tháng 5 2021

a)Ta có:\(\widehat{ABO};\widehat{ACO}\) lần lượt là góc nội tiếp chắn nửa đường tròn

\(\Rightarrow\widehat{ABO=}\widehat{ACO}=90^{ }\)

\(\Rightarrow\widehat{ABO}+\widehat{ACO}=90+90=180\)

Mà hai góc này đối nhau nên tứ giác ABOC nội tiếb)

b)Theo a) ta có:\(\widehat{ABO}=90\)⇒▲ABO là tam giác vuông tại B đường cao AH.

Áp dụng định lí pytago vào tam giác vuông ABO đường cao AH ta có:

\(AO^2=AB^2+BO^2=4^2+3^2=25\)

\(\Rightarrow\sqrt{AO}=5\) cm.

Áp dụng hệ thức lượng giữa cạnh và đường cao trong ▲vuông ABO ta có:

\(AB^2=AH\cdot AO\)

\(\Rightarrow AH=\dfrac{AB^2^{ }}{AO}=\dfrac{4^2^{ }}{5}=\dfrac{16}{5}\)