K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 12 2019

Cho điểm A nằm ngoài đường tròn (O;R) và OA = 2R. Vẽ các tiếp tuyến AB, AC với đường tròn (O) [B, C(O)]. Khẳng định nào sau đây đúng?

A. AB=AC=BC2=R3

B.AB=AC=BC=R5

C. AB=AC=BC=R3

D.

NV
9 tháng 7 2021

Do AB là tiếp tuyến \(\Rightarrow\Delta OAB\) vuông tại A

Theo định lý Pitago:

\(AB=\sqrt{OA^2-OB^2}=\sqrt{2R^2-R^2}=R\)

\(\Rightarrow AB=OB\Rightarrow\Delta OAB\) vuông cân tại B

Hoàn toàn tương tự ta có tam giác \(OAC\) vuông cân tại C

\(\Rightarrow OBAC\) là hình vuông

b.

Do DB và DM là 2 tiếp tuyến \(\Rightarrow DB=DM\)

Tương tự ta có \(EM=EC\)

\(\Rightarrow\) Chu vi tứ giác ADE:

\(AD+DE+EA=AD+DM+ME+EA=AD+DB+EC+EA=AB+AC=2R\)

NV
9 tháng 7 2021

undefined

2 tháng 5 2023

iu

 

10 tháng 12 2023

a: Xét tứ giác ABOC có

\(\widehat{OBA}+\widehat{OCA}=90^0+90^0=180^0\)

=>ABOC là tứ giác nội tiếp

=>A,B,O,C cùng thuộc một đường tròn

b: Xét (O) có

AB,AC là tiếp tuyến

Do đó: AB=AC và AO là phân giác của góc BAC

Ta có: AB=AC

=>A nằm trên đường trung trực của BC(1)

Ta có: OB=OC

=>O nằm trên đường trung trực của BC(2)

từ (1) và (2) suy ra AO là đường trung trực của BC

=>OA\(\perp\)BC

c: Xét ΔOBA vuông tại B có \(sinBAO=\dfrac{OB}{OA}=\dfrac{1}{2}\)

nên \(\widehat{BAO}=30^0\)

Ta có: AO là phân giác của góc BAC

=>\(\widehat{BAC}=2\cdot\widehat{BAO}=60^0\)

Ta có: ΔOBA vuông tại B

=>\(BO^2+BA^2=OA^2\)

=>\(BA^2=\left(2R\right)^2-R^2=3R^2\)

=>\(BA=R\sqrt{3}\)

Xét ΔBAC có AB=AC và \(\widehat{BAC}=60^0\)

nên ΔBAC đều

=>\(S_{BAC}=\dfrac{BA^2\cdot\sqrt{3}}{4}=\dfrac{3R^2\cdot\sqrt{3}}{4}\)