Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tứ giác ABOC có
\(\widehat{ABO}\) và \(\widehat{ACO}\) là hai góc đối
\(\widehat{ABO}+\widehat{ACO}=180^0\)
Do đó: ABOC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
a: góc ABO+góc ACO=90+90=180 độ
=>ABOC nội tiếp
b: Xét ΔABM và ΔANB có
góc ABM=góc ANB
góc BAM chung
=>ΔABM đồng dạng với ΔANB
=>AB/AN=AM/AB
=>AB^2=AN*AM
a: góc OBA+góc OCA=90+90=180 độ
=>OBAC nội tiếp
b: Xét ΔACE và ΔAFC có
góc ACE=góc AFC
góc CAE chung
=>ΔACE đồng dạng với ΔAFC
=>AC/AF=AE/AC
=>AC^2=AF*AE
Lời giải:
a)
Vì $AB,AC$ là tiếp tuyến $(O)$ nên:
$AB\perp BO; AC\perp CO$
$\Rightarrow \widehat{ABO}=\widehat{ACO}=90^0$
$\Rightarrow \widehat{ABO}+\widehat{ACO}=180^0$
Tứ giác $ABOC$ có tổng 2 góc đối bằng $180^0$ nên là tgnt (đpcm)
b)
Xét tam giác $ABE$ và $AFB$ có:
$\widehat{A}$ chung
$\widehat{ABE}=\widehat{AFB}$ (góc tạo bởi tiếp tuyến và dây cung thì bằng góc nt chắn cung đó)
$\Rightarrow \triangle ABE\sim \triangle AFB$ (g.g)
$\Rightarrow \frac{BE}{BF}=\frac{AE}{AB}(1)$
Tương tự:
$\triangle ACE\sim \triangle AFC$ (g.g)
$\Rightarrow \frac{CE}{CF}=\frac{AE}{AC}(2)$
Từ $(1);(2)$ kết hợp với $AB=AC$ (tính chất 2 tiếp tuyến giao nhau) nên $\frac{BE}{BF}=\frac{CE}{CF}$
$\Rightarrow BE.CF=BF.CE$ (đpcm)
ta có: góc ABO và góc ACO cùng nhìn xuống cạnh AO dưới 1 góc vuông nên tứ giác ABOC nội tiếp đường tròn đường kính AO
Pppp:)))