Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\overrightarrow{AI}=\dfrac{1}{2}\left(\overrightarrow{AM}+\overrightarrow{AN}\right)=\dfrac{1}{4}\overrightarrow{AB}+\dfrac{1}{4}\overrightarrow{AC}\)
1) Ta có:\(\overrightarrow{AB}+\overrightarrow{DE}-\overrightarrow{DB}+\overrightarrow{BC}=\overrightarrow{AE}+\overrightarrow{BC}=\overrightarrow{AC}+\overrightarrow{CE}+\overrightarrow{BE}+\overrightarrow{EC}\)
\(=\overrightarrow{AC}+\overrightarrow{BE}+\overrightarrow{CE}+\overrightarrow{EC}=\overrightarrow{AC}+\overrightarrow{BE}\left(đpcm\right)\)2) a) Ta có: \(\overrightarrow{AD}+\overrightarrow{BE}+\overrightarrow{CF}=\overrightarrow{AE}+\overrightarrow{ED}+\overrightarrow{BF}+\overrightarrow{FE}+\overrightarrow{CD}+\overrightarrow{DF}\)\(=\overrightarrow{AE}+\overrightarrow{BF}+\overrightarrow{CD}+\overrightarrow{ED}+\overrightarrow{DF}+\overrightarrow{FE}\)
\(=\overrightarrow{AE}+\overrightarrow{BF}+\overrightarrow{CD}\left(đpcm\right)\)
b) Ta có: \(\overrightarrow{AB}+\overrightarrow{CD}=\overrightarrow{AD}+\overrightarrow{DB}+\overrightarrow{CB}+\overrightarrow{BD}\)
\(=\overrightarrow{AD}+\overrightarrow{CB}+\overrightarrow{DB}+\overrightarrow{BD}=\overrightarrow{AD}+\overrightarrow{CB}\left(đpcm\right)\)c) \(\overrightarrow{AB}-\overrightarrow{CD}=\overrightarrow{AB}-\overrightarrow{BD}\)
\(\overrightarrow{AB}+\overrightarrow{DC}=\overrightarrow{AB}+\overrightarrow{DB}\)
Ta có: \(\overrightarrow{AB}+\overrightarrow{DC}=\overrightarrow{AB}+\overrightarrow{DB}+\overrightarrow{BC}\) ( đề bài bị lỗi gì à ?? :v ) hay do mình =))
*Xét tam giác ABC có M; N là trung điểm của AB, BC nên MN là đường trung bình của tam giác.
⇒ M N / / A C ; M N = 1 2 A C ( 1 )
* Xét tam giác ADC có P; Q là trung điểm của CD, DA nên PQ là đường trung bình của tam giác.
⇒ P Q / / A C ; P Q = 1 2 A C ( 2 )
* Từ (1) (2) suy ra PQ// MN; PQ = MN.
Suy ra, vecto M N → không cùng phương với vecto A P →
Đáp án B
Lời giải:
Ta có:
\(2\overrightarrow{AN}=\overrightarrow{AN}+\overrightarrow{AN}=\overrightarrow{AB}+\overrightarrow{BN}+\overrightarrow{AC}+\overrightarrow{CN}\)
\(=(\overrightarrow{AB}+\overrightarrow{AC})+(\overrightarrow{BN}+\overrightarrow{CN})=\overrightarrow{AB}+\overrightarrow{AC}\)
\(=2\overrightarrow{AM}+2\overrightarrow{AP}=2(\overrightarrow{AM}+\overrightarrow{AP})\)
\(\Rightarrow \overrightarrow{AN}=\overrightarrow{AM}+\overrightarrow{AP}\). Đáp án A đúng
---------------------------
Tương tự: \(\overrightarrow{BP}=\overrightarrow{BM}+\overrightarrow{BN}\Rightarrow \overrightarrow{PB}=\overrightarrow{MB}+\overrightarrow{NB}\) (đáp án B đúng)
---------------
\(\overrightarrow{BP}=\overrightarrow{BM}+\overrightarrow{BN}=2\overrightarrow{BA}+2\overrightarrow{BC}=2(\overrightarrow{BA}+\overrightarrow{BC})\) (đáp án C sai )
----------------
\(\overrightarrow{CM}=\overrightarrow{CP}+\overrightarrow{CN}=\overrightarrow{CP}+\overrightarrow{NB}\) (đáp án D đúng)
Vậy đáp án cần chọn là C
Lời giải:
Ta có:
\(2\overrightarrow{AN}=\overrightarrow{AN}+\overrightarrow{AN}=\overrightarrow{AB}+\overrightarrow{BN}+\overrightarrow{AC}+\overrightarrow{CN}\)
\(=(\overrightarrow{AB}+\overrightarrow{AC})+(\overrightarrow{BN}+\overrightarrow{CN})=\overrightarrow{AB}+\overrightarrow{AC}\)
\(=2\overrightarrow{AM}+2\overrightarrow{AP}=2(\overrightarrow{AM}+\overrightarrow{AP})\)
\(\Rightarrow \overrightarrow{AN}=\overrightarrow{AM}+\overrightarrow{AP}\)
Đáp án A
\(\overrightarrow{AB}+\overrightarrow{NA}+\overrightarrow{BM}+\overrightarrow{BQ}=\overrightarrow{NB}+\overrightarrow{BM}+\overrightarrow{BQ}=\overrightarrow{NM}+\overrightarrow{BQ}\)
\(\overrightarrow{NM}=\overrightarrow{BQ}=\overrightarrow{QC}\)
\(\Rightarrow\overrightarrow{NM}+\overrightarrow{BQ}=\overrightarrow{QC}+\overrightarrow{BQ}=\overrightarrow{BC}\)