Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Trên cùng nửa mặt phẳng bờ là đường thẳng AM
có góc BOC< MOC (70 độ<115 độ)
nên tia OB nằm giữa hai tia OM và OC
b.Vì tia OB nằm giữa hai tia OM và OC
nên góc MOB+ góc BOC= góc MOC
góc MOB= MOC - BOC
góc MOB= 115 - 70
góc MOB= 45 độ
vậy góc MOB= 45 độ
Trên cùng nửa mặt phẳng bờ là đường thẳng AM
có góc MOC< góc AOM ( 115 độ< 180 độ )
nên tia OC nằm giữa hai tia OA và OM
suy ra góc AOC + góc MOC = góc AOM
góc AOC = góc AOM - góc MOC
góc AOC = 180 độ - 115 độ
góc AOC =65 độ
Hình tự vẽ.
Giải:
\(\widehat{A'OB}=180^o-45^o=135^o\)
\(\widehat{A'OB'}=\frac{1}{2}\widehat{A'OC}=45^o\)
\(\Rightarrow\widehat{A'OB}+\widehat{A'OB'}=135^o+45^o=180^o\). Từ đây suy ra OB và OB' đối nhau.
Ta lại có OA và OA' đối nhau nên \(\widehat{AOB}\)và \(\widehat{A'OB'}\)đối đỉnh.
+) Tia OB nằm giữa 2 tia OA và OA' => góc AOB + BOA' = AOA' => 45 o + BOA' = 180 o => góc BOA' = 180 o - 45 o = 135 o
+) Tia OC nằm giữa 2 tia OA và OA' => góc A'OC + COA = AOA' => góc A'OC = 180 o - 90 o = 90 o
+) Tia OB' là tia p/g của góc A'OC => góc A'OB' = góc A'OC/2 = 45 o
và tia OB' nằm giữa 2 tia OA' và OC => tia OB' và OC nằm cùng nửa mp bờ chứa tia OA'
mà OC và OB nằm hai nửa mp bờ chứa tia OA'
=> tia OB' và OB nằm 2 nửa mp bờ chứa tia OA' => tia OA' nằm giữa 2 tia OB và OB'
=> góc BOA' + A'OB' = BOB'
=> 135 o + 45 o = BOB' => góc BOB' = 180 o => tia OB và OB' đối nhau mà 2 tia OA và OA' đối nhau
=> góc AOB và A'OB' đối đỉnh
a) Ta có :
OC vuông góc với OA = 90°
Mà OB' là phân giác A'OC
=> A'OB' = 90/2 = 45°
Mà OA là tia đối OA' (gt)
=> AOB = A'OB' = 45°
b) Vì B'OD = 90°
Mà A'OB' = 45°(cmt)
=> A'OD = 45°
=> A'OD = A'OB' = 45°
=> OA' là phân giác B'OD
Cho tam giác ABC, tia phân giác trong AD , M là điểm bất kì thuộc đường thẳng BC. Qua M vẽ đường thẳng song song với AD cắt AB,AC lần lượt tại P,Q. Chứng minh rằng tam giác APQ có hai góc bằng nhau
Ta có \(\left\{{}\begin{matrix}\widehat{O_1}+\widehat{O_2}=180^0\left(kề.bù\right)\\\widehat{O_3}+\widehat{O_4}=180^0\left(kề.bù\right)\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\widehat{O_2}=180^0-140^0=40^0\\\widehat{O_4}=180^0-130^0=150^0\end{matrix}\right.\)
\(\widehat{AOB}=\widehat{O_2}+\widehat{O_4}=40^0+50^0=90^0\\ \Rightarrow OA\perp OB\)