Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\frac{x}{y}=\frac{z}{t}=k\Rightarrow\hept{\begin{cases}x=yk\\z=tk\end{cases}}\)
Ta có : \(\frac{2x^2-3xy+5y^2}{3x^2+3xy}=\frac{2y^2.k^2+3y^2k+5y^2}{3y^2k^2+3y^2k}=\frac{y^2.\left(2k^2+3k+5\right)}{3ky^2\left(1+k\right)}=\frac{2k^2+3k^2+5}{3k\left(1+k\right)}\)(1) (sửa đề lại)
\(\frac{2z^2+3tz+5t^2}{3z^2+3zt}=\frac{2t^2.k^2+3t^2k+5t^2}{3t^2.k^2+3t^2k}=\frac{t^2\left(2k^2+3k^2+5\right)}{3t^2k\left(1+k\right)}=\frac{2k^2+3k^2+5}{3k\left(1+k\right)}\)(2)
Từ (1) và (2) => Điều phải chứng minh
suy ra:
\(\dfrac{4\left(3x-2y\right)}{16}=\dfrac{3\left(2z-4x\right)}{9}=\dfrac{2\left(4y-3z\right)}{4}\)
\(=\dfrac{12x-8y+6z-12x+8y-6z}{29}=0\)
Vậy
\(\dfrac{3x-2y}{4}=0\Rightarrow3x=\dfrac{2y\Rightarrow x}{2}=\dfrac{y}{3}\left(1\right)\)
\(\dfrac{2z-4x}{4}=0\Rightarrow2z=4x\Rightarrow\dfrac{x}{2}=\dfrac{z}{4}\left(2\right)\)
từ (1) và (2) ta được\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\)
\(\dfrac{3x-2y}{4}=\dfrac{2z-4x}{3}=\dfrac{4y-3z}{2}\)
=>\(\dfrac{4\left(3x-2y\right)}{4.4}=\dfrac{3\left(2z-4x\right)}{3.3}=\dfrac{2\left(4y-3z\right)}{2.2}\)
=>\(\dfrac{12x-8y}{16}=\dfrac{6z-12x}{9}=\dfrac{8y-6z}{4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có
\(\dfrac{12x-8y}{16}=\dfrac{6z-12x}{9}=\dfrac{8y-6z}{4}=\dfrac{12x-8y+6z-12x+8y-6z}{16+9+4}=\dfrac{0}{29}=0\)
=>\(\dfrac{12x-8y}{16}=0\)
=>12x-8y=0
=>12x=8y
=>\(\dfrac{12x}{24}=\dfrac{8y}{24}\)
=>\(\dfrac{x}{2}=\dfrac{y}{3}\)(1)
Lại có \(\dfrac{8y-6z}{4}=0\)
=>8y-6z=0
=>8y=6z
=>\(\dfrac{8y}{24}=\dfrac{6z}{24}\)
=>\(\dfrac{y}{3}=\dfrac{z}{4}\)(2)
từ (1) và (2)=>\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\left(đpcm\right)\)
a) \(A=2x^2-\dfrac{1}{3}y\)
A= \(\left(2-\dfrac{1}{3}\right)\)\(x^2y\)
A=\(\dfrac{5}{3}\)\(x^2y\)
Tại \(x=2;y=9\) ta có
A=\(\dfrac{5}{3}\).(2)\(^2\).9 = \(\dfrac{5}{3}\).4 .9 = 60
Vậy tại \(x=2;y=9\) biểu thức A= 60
b) P=\(2x^2+3xy+y^2\) (\(y^2\) là 1\(y^2\) nha bạn)
P=\(\left(2+3+1\right)\left(x^2.x\right)\left(y.y^2\right)\)
P= 6\(x^3y^3\)
Tại \(x=-\dfrac{1}{2};y=\dfrac{2}{3}\) ta có
P= 6.\(\left(-\dfrac{1}{2}\right)^3.\left(\dfrac{2}{3}\right)^3\) = 6.\(\left(-\dfrac{1}{8}\right).\dfrac{8}{27}\) = \(-\dfrac{2}{9}\)
Vậy tại \(x=-\dfrac{1}{2};y=\dfrac{2}{3}\) biểu thức P= \(-\dfrac{2}{9}\)
c)\(\left(-\dfrac{1}{2}xy^2\right).\left(\dfrac{2}{3}x^3\right)\)
=\(\left((-\dfrac{1}{2}).\dfrac{2}{3}\right)\left(x.x^3\right).y^2\)
=\(-\dfrac{1}{3}\)\(x^4y^2\)
Tại \(x=2;y=\dfrac{1}{4}\)ta có
\(-\dfrac{1}{3}\).\(\left(2\right)^4.\left(\dfrac{1}{4}\right)^2=-\dfrac{1}{3}.16.\dfrac{1}{16}=-\dfrac{1}{3}\)
\(\)Vậy \(x=2;y=\dfrac{1}{4}\) biểu thức \(\left(-\dfrac{1}{2}xy^2\right).\left(\dfrac{2}{3}x^3\right)\)= \(-\dfrac{1}{3}\)
CHÚC BẠN HỌC TỐT NHA
Từ \(\dfrac{3x-2y}{4}=\dfrac{2z-4x}{3}=\dfrac{4y-3z}{2}\)
\(\Leftrightarrow\dfrac{12x-8y}{16}=\dfrac{6z-12x}{9}=\dfrac{8y-6z}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{12x-8y}{16}=\dfrac{6z-12x}{9}=\dfrac{8y-6z}{4}\)
\(=\dfrac{12x-8y+6z-12x+8y-6z}{16+9+4}=\dfrac{0}{16+9+4}=0\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{3x-2y}{4}=0\\\dfrac{2z-4x}{3}=0\\\dfrac{4y-3z}{2}=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}3x=2y\\2z=4x\\4y=3z\end{matrix}\right.\)\(\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\)
\(\dfrac{3x-2y}{4}=\dfrac{2z-4x}{3}=\dfrac{4y-3z}{2}\)
\(\Rightarrow\dfrac{4\left(3x-2y\right)}{3.4}=\dfrac{3\left(2z-4x\right)}{3.3}=\dfrac{2\left(4y-3z\right)}{2.2}\)
\(\Rightarrow\dfrac{12x-8y}{12}=\dfrac{6z-12x}{9}=\dfrac{8y-6z}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{12x-8y}{12}=\dfrac{6z-12x}{9}=\dfrac{8y-6z}{4}\)
\(=\dfrac{12x-8y+6z-12x+8y-6z}{12+9+4}\)
\(=0\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{3x-2y}{4}=0\Rightarrow3x=2y\\\dfrac{2z-4x}{3}=0\Rightarrow2z=4x\\\dfrac{4y-3z}{2}=0\Rightarrow4y=3z\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{2}=\dfrac{y}{3}\\\dfrac{z}{4}=\dfrac{x}{2}\\\dfrac{y}{3}=\dfrac{z}{4}\end{matrix}\right.\)
\(\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\rightarrowđpcm\)
Đặt \(\dfrac{x}{y}=\dfrac{z}{t}=k\Rightarrow x=ky;z=kt\)
Xét \(VT=\dfrac{2x^2-3xy+5y^2}{2y^2+3xy}=\dfrac{2\left(ky\right)^2-3ky\cdot y+5y^2}{2y^2+3ky\cdot y}\)
\(=\dfrac{2k^2y^2-3ky^2+5y^2}{2y^2+3ky^2}=\dfrac{y^2\left(2k^2-3k+5\right)}{y^2\left(2+3k\right)}=\dfrac{2k^2-3k+5}{3k+5}\)
Và \(VP=\dfrac{2z^2-3zt+5t^2}{2t^2+3zt}=\dfrac{2\left(kt\right)^2-3kt\cdot t+5t^2}{2t^2+3kt\cdot t}\)
\(=\dfrac{2k^2t^2-3kt^2+5t^2}{2t^2+3kt^2}=\dfrac{t^2\left(2k^2-3k+5\right)}{t^2\left(2+3k\right)}=\dfrac{2k^2-3k+5}{3k+5}\)
Dễ thấy \(VT=VP\)\(\forall \frac{x}{y}=\frac{z}{t}\) nên ta có ĐPCM