K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 12 2022

a: a/b=c/d=k

=>a=bk; c=dk

\(\dfrac{a}{a-b}=\dfrac{bk}{bk-b}=\dfrac{k}{k-1}\)

\(\dfrac{c}{c-d}=\dfrac{dk}{dk-d}=\dfrac{k}{k-1}=\dfrac{a}{a-b}\)

b: \(\dfrac{a}{b}=\dfrac{bk}{b}=k\)

\(\dfrac{a+c}{b+d}=\dfrac{bk+dk}{b+d}=k=\dfrac{a}{b}\)

\(\dfrac{a}{3a+b}=\dfrac{bk}{3bk+b}=\dfrac{k}{3k+1}\)

\(\dfrac{c}{3c+d}=\dfrac{dk}{3dk+d}=\dfrac{k}{3k+1}=\dfrac{a}{3a+b}\)

d: \(\dfrac{ac}{bd}=\dfrac{bk\cdot dk}{bd}=k^2\)

\(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{b^2k^2+d^2k^2}{b^2+d^2}=k^2=\dfrac{ac}{bd}\)

AH
Akai Haruma
Giáo viên
20 tháng 11 2018

Bài 1:

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk; c=dk\)

Khi đó: \(\left\{\begin{matrix} \frac{2a+5b}{3a-4b}=\frac{2bk+5b}{3bk-4b}=\frac{b(2k+5)}{b(3k-4)}=\frac{2k+5}{3k-4}\\ \frac{2c+5d}{3c-4d}=\frac{2dk+5d}{3dk-4d}=\frac{d(2k+5)}{d(3k-4)}=\frac{2k+5}{3k-4}\end{matrix}\right.\)

\(\Rightarrow \frac{2a+5b}{3a-4b}=\frac{2c+5d}{3c-4d}\)

Ta có đpcm.

AH
Akai Haruma
Giáo viên
20 tháng 11 2018

Bài 2:

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk; c=dk\)

Khi đó: \(\frac{ab}{cd}=\frac{bk.b}{dk.d}=\frac{b^2}{d^2}\)

\(\frac{a^2+b^2}{c^2+d^2}=\frac{(bk)^2+b^2}{(dk)^2+d^2}=\frac{b^2(k^2+1)}{d^2(k^2+1)}=\frac{b^2}{d^2}\)

Do đó: \(\frac{ab}{cd}=\frac{a^2+b^2}{c^2+d^2}(=\frac{b^2}{d^2})\) . Ta có đpcm.

10 tháng 11 2018

b,

\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{b}{d}=\dfrac{a}{c}=\dfrac{b+a}{d+c}\\ \Rightarrow\dfrac{a}{a+b}=\dfrac{c}{c+d}\)

c,

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

ta có: \(a=bk;c=dk\)

\(\Rightarrow\dfrac{2a+3c}{2b+3d}=\dfrac{2bk+3dk}{2b+3d}=\dfrac{k^2.\left(2b+3d\right)}{2b+3d}=k^2\\ \Rightarrow\dfrac{2a-3c}{2b-3d}=\dfrac{2bk-3dk}{2b-3d}=\dfrac{k^2.\left(2b-3d\right)}{2b-3d}=k^2\\ \Rightarrow\dfrac{2a+3c}{2b+3d}=\dfrac{2a-3c}{2b-3d}\)

d,

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

ta có:\(a=bk;c=dk\)

\(\Rightarrow\dfrac{ac}{bd}=\dfrac{bk.dk}{bd}=k^2\\ \Rightarrow\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{k^2.\left(b+d\right)^2}{\left(b+d\right)^2}=k^2\\ \Rightarrow\dfrac{ac}{bd}=\dfrac{a^2+c^2}{b^2+d^2}\)

e,

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

Ta có:\(a=bk;c=dk\)

\(\Rightarrow\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{k^2.\left(b+d\right)^2}{\left(b+d\right)^2}=k^2\\ \Rightarrow\dfrac{a^2-c^2}{b^2-d^2}=\dfrac{k^2.\left(b-d\right)^2}{\left(b-d\right)^2}=k^2\\ \Rightarrow\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{a^2-c^2}{b^2-d^2}\)

f,

(để hôm sau lm nha, mỏi tay quá)

10 tháng 11 2018

a, \(\dfrac{a}{b}\)=\(\dfrac{c}{d}\)=> \(\dfrac{a}{c}\)=\(\dfrac{b}{d}\)=\(\dfrac{a+b}{c+d}\)=\(\dfrac{a-b}{c-d}\)(1)

\(\dfrac{a+b}{c+d}\)=\(\dfrac{a-b}{c-d}\)=> \(\dfrac{a+b}{a-b}\)=\(\dfrac{c+d}{c-d}\)

Còn các phần còn lại làm giống thế

AH
Akai Haruma
Giáo viên
7 tháng 2 2020

Bài 1:

$\frac{a}{b}=\frac{c}{d}=t\Rightarrow a=bt; c=dt$. Khi đó:

\(\frac{2a^2-3ab+5b^2}{2a^2+3ab}=\frac{2(bt)^2-3.bt.b+5b^2}{2(bt)^2+3bt.b}=\frac{b^2(2t^2-3t+5)}{b^2(2t^2+3t)}\)

$=\frac{2t^2-3t+5}{2t^2+3t}(1)$
\(\frac{2c^2-3cd+5d^2}{2c^2+3cd}=\frac{2(dt)^2-3.dt.d+5d^2}{2(dt)^2+3dt.d}=\frac{d^2(2t^2-3t+5)}{d^2(2t^2+3t)}=\frac{2t^2-3t+5}{2t^2+3t}(2)\)

Từ $(1);(2)$ suy ra đpcm.

AH
Akai Haruma
Giáo viên
7 tháng 2 2020

Bài 2:

Từ $\frac{a}{c}=\frac{c}{b}\Rightarrow c^2=ab$. Khi đó:

$\frac{b^2-c^2}{a^2+c^2}=\frac{b^2-ab}{a^2+ab}=\frac{b(b-a)}{a(a+b)}$ (đpcm)

20 tháng 12 2017

a) Ta co: a/b = c/d= k

=> a=bk

c=dk

Ta co: a-b/a+b = bk-b/bk+b = b(k-1)/b(k+1) = k-1/k+1 (1)

Ta co: c-d/c+d = dk-d/dk+d = d(k-1)/d(k+1) = k-1/k+1 (2)

Tu (1) va (2)

=> a-b/a+b=c-d/c+d

20 tháng 12 2017

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\) (*)

a) Từ (*) ta có:

\(\dfrac{a-b}{a+b}=\dfrac{bk-b}{bk+b}=\dfrac{b\left(k-1\right)}{b\left(k+1\right)}=\dfrac{k-1}{k+1}\) (1)

\(\dfrac{c-d}{c+d}=\dfrac{dk-d}{dk+d}=\dfrac{d\left(k-1\right)}{d\left(k+1\right)}=\dfrac{k-1}{k+1}\) (2)

Từ (1) và (2) suy ra \(\dfrac{a-b}{a+b}=\dfrac{c-d}{c+d}\)

b) Từ (*) ta có:

\(\dfrac{7a-4b}{3a+5b}=\dfrac{7bk-4b}{3bk+5b}=\dfrac{b\left(7k-4\right)}{b\left(3k+5\right)}=\dfrac{7k-4}{3k+5}\) (3)

\(\dfrac{7c-4d}{3c+5d}=\dfrac{7dk-4d}{3dk+5d}=\dfrac{d\left(7k-4\right)}{d\left(3k+5\right)}=\dfrac{7k-4}{3k+5}\) (4)

Từ (3) và (4) suy ra \(\dfrac{7a-4b}{3a+5b}=\dfrac{7c-4d}{3c+5d}\)

c) Từ (*) ta có:

\(\dfrac{ac}{bd}=\dfrac{bk.dk}{bd}=k^2\) (5)

\(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{\left(bk\right)^2+\left(dk\right)^2}{b^2+d^2}=\dfrac{k^2\left(b^2+d^2\right)}{b^2+d^2}=k^2\) (6)

\(\dfrac{\left(c-a\right)^2}{\left(d-b\right)^2}=\dfrac{\left[\left(dk\right)-\left(bk\right)\right]^2}{\left(d-b\right)^2}=\dfrac{\left[k\left(d-b\right)\right]^2}{\left(d-b\right)^2}=k^2\) (7)

Từ (5), (6) và (7) suy ra \(\dfrac{ac}{bd}=\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{\left(c-a\right)^2}{\left(d-b\right)^2}\)

31 tháng 10 2017

Bài 1:

Áp dụng t.c của dãy tỉ số bằng nhau, ta có:

\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a+b+c}{b+c+d}\\ =\left(\dfrac{a+b+c}{b+c+d}\right)^3=\dfrac{a^3}{b^3}=\dfrac{a.b.c}{b.c.d}=\dfrac{a}{d}\left(dpcm\right)\)

1 tháng 11 2017

Thanks nha!!!

13 tháng 7 2018

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

Ta có:

\(\dfrac{ab}{cd}=\dfrac{bk.b}{dk.d}=\dfrac{b^2}{d^2}\) (1)

\(\dfrac{a^2-b^2}{c^2-d^2}=\dfrac{\left(bk\right)^2-b^2}{\left(dk\right)^2-d^2}=\dfrac{b^2k^2-b^2}{d^2k^2-d^2}=\dfrac{b^2\left(k^2-1\right)}{d^2\left(k^2-1\right)}=\dfrac{b^2}{d^2}\) (2)

Từ (1) và (2) suy ra \(\dfrac{ab}{cd}=\dfrac{a^2-b^2}{c^2-d^2}\)

1 tháng 8 2018

tick cho bạn nhaok

Ta có:

\(\dfrac{a}{b}=\dfrac{c}{d}\)=>\(\dfrac{a}{c}=\dfrac{b}{d}\)

<=>\(\dfrac{5a}{5c}=\dfrac{3b}{3d}=\dfrac{3a}{3c}=\dfrac{2b}{2d}\)

<=>\(\dfrac{5a-3b}{5c-3d}=\dfrac{3a-2b}{3c-2d}\)(đpcm)

Các câu sau tương tự

N
4 tháng 9 2017

Nguyễn Thị Hồng Nhung chị làm bài f đc ko ạ ???