K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2017

Đặt:

\(\dfrac{a}{b}=\dfrac{c}{d}=k\)

\(\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

\(\Rightarrow\dfrac{a+2b}{c+2d}=\dfrac{bk+2b}{dk+2d}=\dfrac{b\left(k+2\right)}{d\left(k+2\right)}=\dfrac{b}{d}\)

\(\Rightarrow\dfrac{a-2b}{c-2d}=\dfrac{bk-2b}{dk-2d}=\dfrac{b\left(k-2\right)}{d\left(k-2\right)}=\dfrac{b}{d}\)

\(\Rightarrow\dfrac{a+2b}{c+2d}=\dfrac{a-2b}{c-2d}\rightarrowđpcm\)

10 tháng 8 2017

ta có : \(\dfrac{a}{b}=\dfrac{c}{d}\Leftrightarrow ad=bc\Leftrightarrow4ad=4bc\Leftrightarrow2ad+2ad=2bc+2bc\)

\(\Leftrightarrow2ad-2bc=2bc-2ad\Leftrightarrow ac+2ad-2bc-4bd=ac+2bc-2ad-4bd\)

\(\Leftrightarrow\left(c+2d\right)\left(a-2b\right)=\left(a+2b\right)\left(c-2d\right)\Leftrightarrow\dfrac{a+2b}{c+2d}=\dfrac{a-2b}{c-2d}\left(đpcm\right)\)

12 tháng 11 2018

a) ta có : \(\dfrac{a}{b}=\dfrac{c}{d}\Leftrightarrow\dfrac{a}{b}=\dfrac{4c}{4d}=\dfrac{a+4c}{b+4d}\left(đpcm\right)\)

b;c;d tương tự hết

19 tháng 11 2022

b: a/b=c/d

nên 3a/3b=2c/2d

=>a/b=c/d=(3a+2c)/(3b+2d)

c: a/c=b/d nên a/c=2b/2d=(a-2b)/(c-2d)

d: a/c=b/d

nên 5a/5c=2b/2d

=>a/c=b/d=(5a-2b)/(5c-2d)

15 tháng 10 2018

Mình hướng dẫn thôi nhé:

Đặt: \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=kb\\c=kd\end{matrix}\right.\) . Sau đó thế vào biểu thức tính rồi suy ra đpcm

Ví dụ bài đầu tiên: Thế a = kb; c=kd vào biểu thức,ta có:

\(\dfrac{a}{a+b}=\dfrac{kb}{kb+b}=\dfrac{kb}{b\left(k+1\right)}=\dfrac{k}{k+1}\) (1)

\(\dfrac{c}{c+d}=\dfrac{kd}{kd+d}=\dfrac{kd}{d\left(k+1\right)}=\dfrac{k}{k+1}\) (2)

Từ (1) và (2) ,ta có đpcm: \(\dfrac{a}{a+b}=\dfrac{c}{c+d}\)

Các bài sau làm tương tự:Thế a=kb ; c=kd vào biểu thức rồi tính từng vế . Sau đó so sánh hai vế. Thấy hai vế = nhau => đpcm

20 tháng 11 2018

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow a=b.k;b=d.k\)

Thay :

(1) : \(\dfrac{3a+2b}{3a-2b}=\dfrac{3bk+2b}{3bk-2b}=\dfrac{b.\left(3.k+2\right)}{b.\left(3.k-2\right)}=\dfrac{3.k+2}{3.k-2}\)

(2) : \(\dfrac{3c+2d}{3c-2d}=\dfrac{3dk+2d}{3dk-2d}=\dfrac{d.\left(3.k+2\right)}{d.\left(3.k-2\right)}=\dfrac{3.k+2}{3.k-2}\)

Do đó : \(\dfrac{3a+2b}{3a-2b}=\dfrac{3c+2d}{3c-2d}\)

2 tháng 9 2017

Đặt:

\(\dfrac{a}{b}=\dfrac{c}{d}=k\Leftrightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

\(\dfrac{a+2b}{b}=\dfrac{bk+2b}{b}=\dfrac{b\left(k+2\right)}{b}=k+2\)

\(\dfrac{c+2d}{d}=\dfrac{dk+2d}{d}=\dfrac{d\left(k+2\right)}{d}=k+2\)

Vậy \(\dfrac{a+2b}{b}=\dfrac{c+2d}{d}\Rightarrowđpcm\)

\(\dfrac{a+b}{a-b}=\dfrac{bk+b}{bk-b}=\dfrac{b\left(k+1\right)}{b\left(k-1\right)}=\dfrac{k+1}{k-1}\)

\(\dfrac{c+d}{c-d}=\dfrac{dk+d}{dk-d}=\dfrac{d\left(k+1\right)}{d\left(k-1\right)}=\dfrac{k+1}{k-1}\)

Vậy \(\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\Rightarrowđpcm\)

2 tháng 9 2017

a) ta có : \(\dfrac{a}{b}=\dfrac{c}{d}\Leftrightarrow ad=bc\Leftrightarrow ad+2bd=bc+2bd\)

\(\Leftrightarrow d\left(a+2b\right)=b\left(c+2d\right)\Leftrightarrow\dfrac{a+2b}{b}=\dfrac{c+2d}{d}\left(đpcm\right)\)

b) ta có : \(\dfrac{a}{b}=\dfrac{c}{d}\Leftrightarrow ad=bc\Leftrightarrow2ad=2bc\Leftrightarrow ad+ad=bc+bc\)

\(\Leftrightarrow ad-bc=bc-ad\Leftrightarrow ac+ad-bc-bd=ac+bc-ad-bd\)

\(\Leftrightarrow a\left(c+d\right)-b\left(c+d\right)=c\left(a+b\right)-d\left(a+b\right)\)

\(\Leftrightarrow\left(a-b\right)\left(c+d\right)=\left(c-d\right)\left(a+b\right)\Leftrightarrow\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\left(đpcm\right)\)

27 tháng 10 2018

Ta có: \(\dfrac{a-2b}{c-2d}=\dfrac{b}{d}\)

\(d.\left(a-2b\right)=b.\left(c-2d\right)\)\(ad-2bd=bc-2bd\)

\(ad=bc\)

\(\dfrac{a}{b}=\dfrac{c}{d}\)

Vậy \(\dfrac{a-2b}{c-2d}=\dfrac{b}{d}\)

Chúc bạn học tốt ^.^

18 tháng 6 2019

day la cac tinh chat ma

18 tháng 6 2019

ê mk cần câu trả lời cho bài trên okibucquabucminh

\(\dfrac{a+b}{c+d}=\dfrac{a-2b}{c-2d}\Rightarrow\left(a+b\right)\left(c-2d\right)=\left(c+d\right)\left(a-2b\right)\\ ac+bc-2ad-2bd=ac+ad-2bc-2bd\\ bc-2ad=ad-2bc\\ 3bc=3ad\\ bc=ad\Rightarrow\dfrac{a}{b}=\dfrac{c}{d}\left(đpcm\right)\)

12 tháng 7 2017

\(\dfrac{a+b}{c+d}=\dfrac{a-2b}{c-2d}\)

\(\Leftrightarrow\left(a+b\right)\left(c-2d\right)=\left(c+d\right)\left(a-2b\right)\)

\(\Leftrightarrow ac-2ad+bc-2bd=ac-2bc+ad-2bd\)

\(\Leftrightarrow2ad+ad=2bc+bc\)

\(\Leftrightarrow3ad=3bc\)

\(\Leftrightarrow ad=bc\rightarrowđpcm\)