Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBEM vuông tại E và ΔCFM vuông tại F có
MB=MC
\(\widehat{MBE}=\widehat{MCF}\)
Do đó:ΔBEM=ΔCFM
b: Ta có: AE+EB=AB
AF+FC=AC
mà EB=FC
và AB=AC
nên AE=AF
mà ME=MF
nên AM là đường trung trực của EF
c: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường trung trực của BC(1)
Xét ΔABD vuông tại B và ΔACD vuông tại C có
AD chung
AB=AC
Do đó: ΔABD=ΔACD
Suy ra: DB=DC
hay D nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra A,M,D thẳng hàng
Sửa đề: góc N=30 độ
a: \(\widehat{M}=180^0-30^0-60^0=90^0\)
b: Xét ΔNME vuông tại M và ΔNFE vuông tại F có
NE chung
\(\widehat{MNE}=\widehat{FNE}\)
Do đó: ΔNME=ΔNFE
Suy ra: EM=EF
c: Xét ΔEMK vuông tại M và ΔEFP vuông tại F có
EM=EF
\(\widehat{MEK}=\widehat{FEP}\)
Do đó: ΔEMK=ΔEFP