Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. -Xét △ABC: AD là đường phân giác (gt)
\(\Rightarrow\dfrac{AB}{AC}=\dfrac{BD}{CD}\) (định lí về đường phân giác trong tam giác)
\(\Rightarrow\dfrac{AB}{16}=\dfrac{6}{8}\)
\(\Rightarrow AB=\dfrac{6}{8}.16=12\left(cm\right)\)
b) -Xét △ABC: DE//AB (gt)
\(\Rightarrow\dfrac{EA}{EC}=\dfrac{BD}{CD}\) (định lí Ta-let)
Mà \(\dfrac{BD}{CD}=\dfrac{AB}{AC}\left(cmt\right)\)
\(\Rightarrow\dfrac{EA}{EC}=\dfrac{AB}{AC}\) nên \(AC.EA=AB.EC\)
c) -Ta có: \(\widehat{BAD}=\widehat{CAD}\) (AD là tia phân giác của \(\widehat{BAC}\))
Mà \(\widehat{BAD}=\widehat{ADE}\) (AB//DE và so le trong)
\(\Rightarrow\widehat{CAD}=\widehat{ADE}\) nên △ADE cân tại E.
\(\Rightarrow AE=DE\)
-Xét △AIE: AP là đường phân giác.
\(\Rightarrow\dfrac{PE}{PI}=\dfrac{AE}{AI}\)(định lí về đường phân giác trong tam giác)
Mà \(AE=DE\left(cmt\right)\); \(AI=BI\) (I là trung điểm AB)
\(\Rightarrow\dfrac{PE}{PI}=\dfrac{DE}{BI}\)
-Xét △QDE: DE//BI.
\(\Rightarrow\dfrac{QD}{QI}=\dfrac{DE}{BI}\) (hệ quả định lí Ta-let)
Mà \(\dfrac{PE}{PI}=\dfrac{DE}{BI}\) nên \(\dfrac{PE}{PI}=\dfrac{QD}{QI}\)
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=6^2+8^2=100\)
hay BC=10(cm)
Xét ΔABC có BD là đường phân giác ứng với cạnh AC(gt)
nên \(\dfrac{AD}{AB}=\dfrac{CD}{BC}\)(Tính chất đường phân giác của tam giác)
hay \(\dfrac{AD}{6}=\dfrac{CD}{10}\)
mà AD+CD=AC(D nằm giữa A và C)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AD}{6}=\dfrac{CD}{10}=\dfrac{AD+CD}{6+10}=\dfrac{AC}{16}=\dfrac{8}{16}=\dfrac{1}{2}\)
Do đó: \(\dfrac{AD}{6}=\dfrac{1}{2}\)
hay AD=3(cm)
Vậy: AD=3cm
a/ Xét \(\Delta ABC\) và \(\Delta HAC\) có :
\(\left\{{}\begin{matrix}\widehat{C}chung\\\widehat{BAC}=\widehat{AHC}=90^0\end{matrix}\right.\)
\(\Leftrightarrow\Delta ABC\sim HAC\left(g-g\right)\)
b/ \(BC=\sqrt{AB^2+AC^2}=10cm\)
\(AH.BC=AB.AC\Leftrightarrow AH=\dfrac{AB.AC}{BC}=4,8cm\)
c/ \(\Delta HEA\sim\Delta CEH\left(g-g\right)\)
\(\Leftrightarrow\dfrac{HE}{CE}=\dfrac{EA}{HE}\Leftrightarrow HE^2=EA.EC\left(đpcm\right)\)
a) Xét ΔHAC và ΔABC có:
∠(ACH ) là góc chung
∠(BAC)= ∠(AHC) = 90o
⇒ ΔHAC ∼ ΔABC (g.g)
b) Xét ΔHAD và ΔBAH có:
∠(DAH ) là góc chung
∠(ADH) = ∠(AHB) = 90o
⇒ ΔHAD ∼ ΔBAH (g.g)
c) Tứ giác ADHE có 3 góc vuông ⇒ ADHE là hình chữ nhật.
⇒ ΔADH= ΔAEH ( c.c.c) ⇒ ∠(DHA)= ∠(DEA)
Mặt khác: ΔHAD ∼ ΔBAH ⇒ ∠(DHA)= ∠(BAH)
∠(DEA)= ∠(BAH)
Xét ΔEAD và ΔBAC có:
∠(DEA)= ∠(BAH)
∠(DAE ) là góc chung
ΔEAD ∼ ΔBAC (g.g)
d) ΔEAD ∼ ΔBAC
ΔABC vuông tại A, theo định lí Pytago:
Theo b, ta có:
a) Xét \(\Delta ABC:\)
AD là phân giác \(\widehat{BAC}\left(gt\right).\)
\(\Rightarrow\dfrac{BD}{CD}=\dfrac{AB}{AC}\) (Tính chất phân giác).
\(\Rightarrow\dfrac{BD}{CD+BD}=\dfrac{AB}{AC+AB}.\\ \Rightarrow\dfrac{BD}{BC}=\dfrac{AB}{AC+AB}.\)
Thay: \(\dfrac{4}{BC}=\dfrac{10}{12+10}.\Rightarrow BC=8,8\left(cm\right).\)
Vậy \(BC=8,8\left(cm\right).\)
a: AD là phân giác
=>DB/AB=DC/AC
=>6/AB=8/16=1/2
=>AB=12cm
b: Xét ΔCED và ΔCAB có
góc CED=góc CAB
góc C chung
=>ΔCED đồng dạng với ΔCAB
b) Ta có: \(\dfrac{AB}{AC}=\dfrac{BD}{DC}\)(cmt)
nên \(\dfrac{AC}{AB}=\dfrac{DC}{BD}\)(1)
Xét ΔABC có
D\(\in\)BC(gt)
E\(\in\)AC(gt)
DE//AB(gt)
Do đó: \(\dfrac{EC}{EA}=\dfrac{CD}{DB}\)(Định lí Ta lét)(2)
Từ (1) và (2) suy ra \(\dfrac{AC}{AB}=\dfrac{EC}{AE}\)
hay \(AC\cdot AE=AB\cdot EC\)(đpcm)
a) Xét ΔABC có AD là đường phân giác ứng với cạnh BC(gt)
nên \(\dfrac{AB}{BD}=\dfrac{AC}{CD}\)(Tính chất tia phân giác của tam giác)
\(\Leftrightarrow\dfrac{AB}{6}=\dfrac{10}{8}\)
hay AB=7,5(cm)
Vậy: AB=7,5cm