Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tự vẽ hình nhé,khua ròi,không muốn mày mò,giờ mới rảnh nên dạo 1 vòng quanh olm :D
a
Xét \(\Delta\)BHO và \(\Delta\)CAO có:^O chung;^OAC=^OHB=900 => \(\Delta\)BHO ~ \(\Delta\)CAO ( g.g )
\(\Rightarrow\frac{HO}{AO}=\frac{OB}{OC}\Rightarrow\frac{OH}{OB}=\frac{AO}{OC}\)
Xét \(\Delta\)OAH và \(\Delta\)OCB có:^O chung;\(\frac{OH}{OB}=\frac{AO}{OC}\) => \(\Delta\)OAH ~ \(\Delta\)OCB ( g.g )
=> ^OHA=^OBC không đổi
b
tui có làm ở đây Câu hỏi của Hoàng Thanh - Toán lớp 8 - Học toán với OnlineMath
\(BM\cdot BH+CM\cdot CA=BC^2\) không đổi nha !!!
a: Xét ΔOHB vuông tại H và ΔOAC vuông tại A có
góc O chung
Do đo:ΔOHB\(\sim\)ΔOAC
Suy ra: OH/OA=OB/OC
=>OH/OB=OA/OC và \(OH\cdot OC=OA\cdot OB\)
b: Xét ΔOHA và ΔOBC có
OH/OB=OA/OC
góc HOA chung
Do đo: ΔOHA\(\sim\)ΔOBC
Suy ra: \(\widehat{OHA}=\widehat{OBC}\)
a: Xét ΔOHB vuông tại H và ΔOAC vuông tại A có
góc O chung
Do đó ΔOHB\(\sim\)ΔOAC
Suy ra: OH/OA=OB/OC
hay \(OH\cdot OC=OA\cdot OB\)
b: Xét ΔOHA và ΔOBC có
OH/OB=OA/OC
góc HOA chung
Do đó: ΔOHA\(\sim\)ΔOBC
Suy ra: \(\widehat{OHA}=\widehat{OBC}\)
hay góc OHA không đổi
a) -△DBE và △ACE có: \(\widehat{BDE}=\widehat{CAE};\widehat{BEC}\) là góc chung.
\(\Rightarrow\)△DBE∼△ACE (g-g).
b) △DBE∼△ACE \(\Rightarrow\dfrac{EB}{EC}=\dfrac{ED}{EA}\Rightarrow\dfrac{EB}{ED}=\dfrac{EC}{EA}\)
-△EAD và △ECB có: \(\dfrac{EB}{ED}=\dfrac{EC}{EA};\widehat{BEC}\) là góc chung.
\(\Rightarrow\)△EAD∼△ECB (c-g-c) nên \(\widehat{EAD}=\widehat{ECB}\)
c) EM cắt BC tại F.
-△BCE có: 2 đường cao BD và CA cắt nhau tại M.
\(\Rightarrow\)M là trực tâm của △BCE.
\(\Rightarrow\)EM⊥BC tại F.
-△BMF và △BCD có: \(\widehat{DBC}\) là góc chung, \(\widehat{BFM}=\widehat{BDC}=90^0\).
\(\Rightarrow\)△BMF∼△BCD (g-g).
\(\Rightarrow\dfrac{BM}{BC}=\dfrac{BF}{BD}\Rightarrow BM.BD=BC.BF\left(1\right)\)
-△CMF và △CBA có: \(\widehat{CFM}=\widehat{CAB}=90^0,\widehat{CBA}\) là góc chung.
\(\Rightarrow\)△CMF∼△CBA (g-g).
\(\Rightarrow\dfrac{CM}{CB}=\dfrac{CF}{CA}\Rightarrow CM.CA=CB.CF\left(2\right)\)
-Từ (1) và (2) suy ra:
\(BM.BD+CM.CA=BC.BF+CB.CF=BC\left(BF+CF\right)=BC.BC=BC^2\)
không đổi.